Search results
Results from the WOW.Com Content Network
Orifice plate showing vena contracta. An orifice plate is a thin plate with a hole in it, which is usually placed in a pipe. When a fluid (whether liquid or gaseous) passes through the orifice, its pressure builds up slightly upstream of the orifice [1] but as the fluid is forced to converge to pass through the hole, the velocity increases and the fluid pressure decreases.
The Agarwal-Okpara-Bao equation is a new form of AVA evaluation equation named after Ramesh K. Agarwal, Emmanuel c Okpara, and Guangyu Bao. [4] [5] It was derived from curve fitting of CFD simulation results and 80 clinical data obtained by Minners, Allgeier, Gohlke-Baerwolf, Kienzle, Neumann, and Jander [6] using a multi-objective genetic ...
The use of the flow coefficient offers a standard method of comparing valve capacities and sizing valves for specific applications that is widely accepted by industry. The general definition of the flow coefficient can be expanded into equations modeling the flow of liquids, gases and steam using the discharge coefficient.
The choked velocity is a function of the upstream pressure but not the downstream. Although the velocity is constant, the mass flow rate is dependent on the density of the upstream gas, which is a function of the upstream pressure. Flow velocity reaches the speed of sound in the orifice, and it may be termed a sonic orifice.
An orifice is any opening, mouth, hole or vent, as in a pipe, a plate, or a body Body orifice , any opening in the body of a human or animal Orifice plate , a restriction used to measure flow or to control pressure or flow, sometimes given specialised names:
The fundamental difference between the orifice meter and the turbine meter is the flow equation derivation. The orifice meter flow calculation is based on fluid flow fundamentals (a 1st Law of Thermodynamics derivation utilizing the pipe diameter and vena contracta diameters for the continuity equation). Deviations from theoretical expectation ...
In order to derive Torricelli's formula the first point with no index is taken at the liquid's surface, and the second just outside the opening. Since the liquid is assumed to be incompressible, ρ 1 {\displaystyle \rho _{1}} is equal to ρ 2 {\displaystyle \rho _{2}} and; both can be represented by one symbol ρ {\displaystyle \rho } .
The C parameter reflects the size of the orifice, the ∆P is the pressure differential across the orifice, and the n parameter represents the characteristic shape of the orifice, with values ranging from 0.5 to 1, representing a perfect orifice and a very long, thin crack, respectively.