Search results
Results from the WOW.Com Content Network
In this scenario, the front desk count-holder represents a counting semaphore, the rooms are the resource, and the students represent processes/threads. The value of the semaphore in this scenario is initially 10, with all rooms empty. When a student requests a room, they are granted access, and the value of the semaphore is changed to 9.
In computer science, an event (also called event semaphore) is a type of synchronization mechanism that is used to indicate to waiting processes when a particular condition has become true. An event is an abstract data type with a boolean state and the following operations:
The following C code examples illustrate two threads that share a global integer i. The first thread uses busy-waiting to check for a change in the value of i : #include <pthread.h> #include <stdatomic.h> #include <stdio.h> #include <stdlib.h> #include <unistd.h> /* i is global, so it is visible to all functions.
The OpenMP standard is supported by some compilers, and allows critical sections to be specified using pragmas. The POSIX pthread API provides lock support. [9] Visual C++ provides the synchronize attribute of methods to be synchronized, but this is specific to COM objects in the Windows architecture and Visual C++ compiler. [10]
Concurrent components communicate by altering the contents of shared memory locations (exemplified by Java and C#). This style of concurrent programming usually needs the use of some form of locking (e.g., mutexes, semaphores, or monitors) to coordinate between threads.
This operating-system -related article is a stub. You can help Wikipedia by expanding it.
The original semaphore bounded buffer solution was written in ALGOL style. The buffer can store N portions or elements. The "number of queueing portions" semaphore counts the filled locations in the buffer, the "number of empty positions" semaphore counts the empty locations in the buffer and the semaphore "buffer manipulation" works as mutex for the buffer put and get operations.
If code and processor instructions in critical sections of code that access the queue could be interleaved by arbitrary context switches between threads on the same processor or by simultaneously-running threads on multiple processors, then there is a risk of exposing inconsistent state and causing race conditions.