Search results
Results from the WOW.Com Content Network
The gravitomagnetic effect in the Cassini radioscience experiment was implicitly postulated by B. Bertotti as having a pure general relativistic origin but its theoretical value has never been tested in the experiment which effectively makes the experimental uncertainty in the measured value of gamma actually larger (by a factor of 10) than 0. ...
The next stage of muon g − 2 research was conducted at the Brookhaven National Laboratory (BNL) Alternating Gradient Synchrotron; the experiment was known as (BNL) Muon E821 experiment, [17] but it has also been called "muon experiment at BNL" or "(muon) g − 2 at BNL" etc. [7] Brookhaven's Muon g − 2 experiment was constructed from 1989 to 1996 and collected data from 1997 to 2001.
The Laser Interferometer Gravitational-Wave Observatory (LIGO) is a large-scale physics experiment and observatory designed to detect cosmic gravitational waves and to develop gravitational-wave observations as an astronomical tool. [1]
Here, G is the gravitational constant of Newtonian gravity, and c is the speed of light from special relativity. This equation is often referred to in the plural as Einstein's equations, since the quantities G and T are each determined by several functions of the coordinates of spacetime, and the equations equate each of these component ...
The spin magnetic moment of a charged, spin-1/2 particle that does not possess any internal structure (a Dirac particle) is given by [1] =, where μ is the spin magnetic moment of the particle, g is the g-factor of the particle, e is the elementary charge, m is the mass of the particle, and S is the spin angular momentum of the particle (with magnitude ħ/2 for Dirac particles).
where F is the gravitational force acting between two objects, m 1 and m 2 are the masses of the objects, r is the distance between the centers of their masses, and G is the gravitational constant. The first test of Newton's law of gravitation between masses in the laboratory was the Cavendish experiment conducted by the British scientist Henry ...
The E821 Experiment at Brookhaven National Laboratory (BNL) studied the precession of muon and antimuon in a constant external magnetic field as they circulated in a confining storage ring. [10] The E821 Experiment reported the following average value [ 8 ] a μ = 0.001 165 920 9 ( 6 ) . {\displaystyle a_{\mu }=0.001\;165\;920\;9(6).}
Cavendish's experiment proved to result in more reliable measurements than pendulum experiments of the "Schiehallion" (deflection) type or "Peruvian" (period as a function of altitude) type. Pendulum experiments still continued to be performed, by Robert von Sterneck (1883, results between 5.0 and 6.3 g/cm 3 ) and Thomas Corwin Mendenhall (1880 ...