Search results
Results from the WOW.Com Content Network
PhET Interactive Simulations is part of the University of Colorado Boulder which is a member of the Association of American Universities. [10] The team changes over time and has about 16 members consisting of professors, post-doctoral students, researchers, education specialists, software engineers (sometimes contractors), educators, and administrative assistants. [11]
This page lists radioactive nuclides by their half-life.
PhET Interactive Simulations, interactive science and math simulations This page was last edited on 29 December 2019, at 18:29 (UTC). Text is available under the ...
A model of an atomic nucleus showing it as a compact bundle of protons (red) and neutrons (blue), the two types of nucleons.In this diagram, protons and neutrons look like little balls stuck together, but an actual nucleus (as understood by modern nuclear physics) cannot be explained like this, but only by using quantum mechanics.
SIESTA (Spanish Initiative for Electronic Simulations with Thousands of Atoms) is an original method and its computer program implementation, to efficiently perform electronic structure calculations and ab initio molecular dynamics simulations of molecules and solids.
Beryllium-7 is an isotope with a half-life of 53.3 days that is generated naturally as a cosmogenic nuclide. [4] The rate at which the short-lived 7 Be
Electron scattering by isolated atoms and molecules occurs in the gas phase. It plays a key role in plasma physics and chemistry and it's important for such applications as semiconductor physics. Electron-molecule/atom scattering is normally treated by means of quantum mechanics.
In a simulation, the potential energy of an atom, , is given by [3] = (()) + (), where is the distance between atoms and , is a pair-wise potential function, is the contribution to the electron charge density from atom of type at the location of atom , and is an embedding function that represents the energy required to place atom of type into the electron cloud.