Search results
Results from the WOW.Com Content Network
The Atmel AVR instruction set is the machine language for the Atmel AVR, a modified Harvard architecture 8-bit RISC single chip microcontroller which was developed by Atmel in 1996. The AVR was one of the first microcontroller families to use on-chip flash memory for program storage.
The AVR architecture was conceived by two students at the Norwegian Institute of Technology (NTH), [1] Alf-Egil Bogen [2] and Vegard Wollan. [3] Atmel says that the name AVR is not an acronym and does not stand for anything in particular. The creators of the AVR give no definitive answer as to what the term "AVR" stands for. [3]
The Atmel 8-bit AVR RISC-based microcontroller combines 32 KB ISP flash memory with read-while-write capabilities, 1 KB EEPROM, 2 KB SRAM, 23 general-purpose I/O lines, 32 general-purpose working registers, 3 flexible timer/counters with compare modes, internal and external interrupts, serial programmable USART, a byte-oriented 2-wire serial ...
ATtiny (also known as TinyAVR) is a subfamily of the popular 8-bit AVR microcontrollers, which typically has fewer features, fewer I/O pins, and less memory than other AVR series chips. The first members of this family were released in 1999 by Atmel (later acquired by Microchip Technology in 2016).
For example, LPM (Load Program Memory) and SPM (Store Program Memory) instructions in the Atmel AVR implement such a modification. Similar solutions are found in other microcontrollers such as the PIC and Z8Encore!, many families of digital signal processors such as the TI C55x cores, and more. Because instruction execution is still restricted ...
In 2007, Atmel launched the second AVR32: The AVR32 UC3 core. This is designed for microcontrollers, using on-chip flash memory for program storage and running without an MMU (memory management unit). The AVR32 UC3 core uses a three-stage pipelined Harvard architecture specially designed to optimize instruction fetches from on-chip flash memory ...
Follow the 10-3-2-1 sleep rule. This is straightforward, logical advice, and it really works: No caffeine 10 hours before bed. No food or drink 3 hours before. No work 2 hours before, and no ...
In early 1960s computers, main memory was expensive and very limited, even on mainframes. Minimizing the size of a program to make sure it would fit in the limited memory was often central. Thus the size of the instructions needed to perform a particular task, the code density, was an important characteristic of any instruction set. It remained ...