Search results
Results from the WOW.Com Content Network
It is a better measure of the aerodynamic efficiency of an aircraft than the wing aspect ratio. It is defined as: = where is span and is the wetted surface. Illustrative examples are provided by the Boeing B-47 and Avro Vulcan. Both aircraft have very similar performance although they are radically different.
For conventional fixed-wing aircraft with moderate aspect ratio and sweep, Oswald efficiency number with wing flaps retracted is typically between 0.7 and 0.85. At supersonic speeds, Oswald efficiency number decreases substantially. For example, at Mach 1.2 Oswald efficiency number is likely to be between 0.3 and 0.5. [1]
A fixed-wing aircraft increases or decreases the lift generated by the wings when it pitches nose up or down by increasing or decreasing the angle of attack (AOA). The roll angle is also known as bank angle on a fixed-wing aircraft, which usually "banks" to change the horizontal direction of flight.
Aircraft flight mechanics are relevant to fixed wing (gliders, aeroplanes) and rotary wing (helicopters) aircraft. An aeroplane ( airplane in US usage), is defined in ICAO Document 9110 as, "a power-driven heavier than air aircraft, deriving its lift chiefly from aerodynamic reactions on surface which remain fixed under given conditions of flight".
An aircraft flying at this speed is operating at its optimal aerodynamic efficiency. According to the above equations, the speed for minimum drag occurs at the speed where the induced drag is equal to the parasitic drag. [4]: Section 5.25 This is the speed at which for unpowered aircraft, optimum glide angle is achieved.
In aerodynamics, the lift-to-drag ratio (or L/D ratio) is the lift generated by an aerodynamic body such as an aerofoil or aircraft, divided by the aerodynamic drag caused by moving through air. It describes the aerodynamic efficiency under given flight conditions. The L/D ratio for any given body will vary according to these flight conditions.
The weight of the aircraft is the common factor that links all aspects of aircraft design such as aerodynamics, structure, and propulsion, all together. An aircraft's weight is derived from various factors such as empty weight, payload, useful load, etc. The various weights are used to then calculate the center of mass of the entire aircraft. [37]
The Monarch Butterfly has a very low 0.168 kg/m 2 wing loading The McDonnell Douglas MD-11 has a high 837 kg/m 2 maximum wing loading. In aerodynamics, wing loading is the total weight of an aircraft or flying animal divided by the area of its wing.