enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Green's identities - Wikipedia

    en.wikipedia.org/wiki/Green's_identities

    In mathematics, Green's identities are a set of three identities in vector calculus relating the bulk with the boundary of a region on which differential operators act. They are named after the mathematician George Green , who discovered Green's theorem .

  3. Green's theorem - Wikipedia

    en.wikipedia.org/wiki/Green's_theorem

    In vector calculus, Green's theorem relates a line integral around a simple closed curve C to a double integral over the plane region D (surface in ) bounded by C. It is the two-dimensional special case of Stokes' theorem (surface in R 3 {\displaystyle \mathbb {R} ^{3}} ).

  4. Green's function - Wikipedia

    en.wikipedia.org/wiki/Green's_function

    Also, Green's functions in general are distributions, not necessarily functions of a real variable. Green's functions are also useful tools in solving wave equations and diffusion equations. In quantum mechanics, Green's function of the Hamiltonian is a key concept with important links to the concept of density of states.

  5. Divergence theorem - Wikipedia

    en.wikipedia.org/wiki/Divergence_theorem

    A special case of this is =, in which case the theorem is the basis for Green's identities. With F → F × G {\displaystyle \mathbf {F} \rightarrow \mathbf {F} \times \mathbf {G} } for two vector fields F and G , where × {\displaystyle \times } denotes a cross product,

  6. Vector calculus identities - Wikipedia

    en.wikipedia.org/wiki/Vector_calculus_identities

    In Cartesian coordinates, the divergence of a continuously differentiable vector field = + + is the scalar-valued function: ⁡ = = (, , ) (, , ) = + +.. As the name implies, the divergence is a (local) measure of the degree to which vectors in the field diverge.

  7. Green's function number - Wikipedia

    en.wikipedia.org/wiki/Green's_function_number

    The Green's function number specifies the coordinate system and the type of boundary conditions that a Green's function satisfies. The Green's function number has two parts, a letter designation followed by a number designation. The letter(s) designate the coordinate system, while the numbers designate the type of boundary conditions that are ...

  8. College football coaches near $15 million in bonuses. A ...

    www.aol.com/college-football-coaches-near-15...

    $5,000: Bowling Green player named MAC player of the year (Harold Fannin Jr.) Buffalo: Pete Lembo $35,000: Sixth win, eligible for non-CFP bowl game $15,000: Eighth regular season win.

  9. Fredholm theory - Wikipedia

    en.wikipedia.org/wiki/Fredholm_theory

    The function K(x,y) is variously known as a Green's function, or the kernel of an integral. It is sometimes called the nucleus of the integral, whence the term nuclear operator arises. In the general theory, x and y may be points on any manifold; the real number line or m-dimensional Euclidean space in the simplest cases.