Search results
Results from the WOW.Com Content Network
In mathematics, Green's identities are a set of three identities in vector calculus relating the bulk with the boundary of a region on which differential operators act. They are named after the mathematician George Green , who discovered Green's theorem .
In vector calculus, Green's theorem relates a line integral around a simple closed curve C to a double integral over the plane region D (surface in ) bounded by C. It is the two-dimensional special case of Stokes' theorem (surface in R 3 {\displaystyle \mathbb {R} ^{3}} ).
The proof uses the fact, which is immediate from the definition of the Fourier transform, ... , is known as the first of Green's identities: = ^. ...
Another method of deriving vector and tensor derivative identities is to replace all occurrences of a vector in an algebraic identity by the del operator, provided that no variable occurs both inside and outside the scope of an operator or both inside the scope of one operator in a term and outside the scope of another operator in the same term ...
Green's functions for linear differential operators involving the Laplacian may be readily put to use using the second of Green's identities. To derive Green's theorem, begin with the divergence theorem (otherwise known as Gauss's theorem), = ^.
In the study of ordinary differential equations and their associated boundary value problems in mathematics, Lagrange's identity, named after Joseph Louis Lagrange, gives the boundary terms arising from integration by parts of a self-adjoint linear differential operator. Lagrange's identity is fundamental in Sturm–Liouville theory.
Upgrade to a faster, more secure version of a supported browser. It's free and it only takes a few moments:
Proof of Theorem. [9] We use the Einstein summation convention. By using a partition of unity, ... in which case the theorem is the basis for Green's identities.