enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Green's identities - Wikipedia

    en.wikipedia.org/wiki/Green's_identities

    In mathematics, Green's identities are a set of three identities in vector calculus relating the bulk with the boundary of a region on which differential operators act. They are named after the mathematician George Green , who discovered Green's theorem .

  3. Green's theorem - Wikipedia

    en.wikipedia.org/wiki/Green's_theorem

    In vector calculus, Green's theorem relates a line integral around a simple closed curve C to a double integral over the plane region D (surface in ) bounded by C. It is the two-dimensional special case of Stokes' theorem (surface in R 3 {\displaystyle \mathbb {R} ^{3}} ).

  4. Integration by parts - Wikipedia

    en.wikipedia.org/wiki/Integration_by_parts

    The proof uses the fact, which is immediate from the definition of the Fourier transform, ... , is known as the first of Green's identities: = ^. ...

  5. Vector calculus identities - Wikipedia

    en.wikipedia.org/wiki/Vector_calculus_identities

    Another method of deriving vector and tensor derivative identities is to replace all occurrences of a vector in an algebraic identity by the del operator, provided that no variable occurs both inside and outside the scope of an operator or both inside the scope of one operator in a term and outside the scope of another operator in the same term ...

  6. Green's function - Wikipedia

    en.wikipedia.org/wiki/Green's_function

    Green's functions for linear differential operators involving the Laplacian may be readily put to use using the second of Green's identities. To derive Green's theorem, begin with the divergence theorem (otherwise known as Gauss's theorem), = ^.

  7. Lagrange's identity (boundary value problem) - Wikipedia

    en.wikipedia.org/wiki/Lagrange's_identity...

    In the study of ordinary differential equations and their associated boundary value problems in mathematics, Lagrange's identity, named after Joseph Louis Lagrange, gives the boundary terms arising from integration by parts of a self-adjoint linear differential operator. Lagrange's identity is fundamental in Sturm–Liouville theory.

  8. Upgrade to a faster, more secure version of a supported browser. It's free and it only takes a few moments:

  9. Divergence theorem - Wikipedia

    en.wikipedia.org/wiki/Divergence_theorem

    Proof of Theorem. [9] We use the Einstein summation convention. By using a partition of unity, ... in which case the theorem is the basis for Green's identities.