Search results
Results from the WOW.Com Content Network
This is a derivation of the magnetic flux density around a solenoid that is long enough so that fringe effects can be ignored. In Figure 1, we immediately know that the flux density vector points in the positive z direction inside the solenoid, and in the negative z direction outside the solenoid.
An example of a solenoidal vector field, (,) = (,) In vector calculus a solenoidal vector field (also known as an incompressible vector field , a divergence-free vector field , or a transverse vector field ) is a vector field v with divergence zero at all points in the field: ∇ ⋅ v = 0. {\displaystyle \nabla \cdot \mathbf {v} =0.}
B r is the residual flux density, ... Image of a solenoid. ... or solenoid. Its moment is the vector sum of the moments of individual turns.
If the magnetic field is constant, the magnetic flux passing through a surface of vector area S is = = , where B is the magnitude of the magnetic field (the magnetic flux density) having the unit of Wb/m 2 , S is the area of the surface, and θ is the angle between the magnetic field lines and the normal (perpendicular) to S.
Aharonov–Bohm effect apparatus showing barrier, X; slots S 1 and S 2; electron paths e 1 and e 2; magnetic whisker, W; screen, P; interference pattern, I; magnetic flux density, B (pointing out of figure); and magnetic vector potential, A. B is essentially nil outside the whisker. In some experiments, the whisker is replaced by a solenoid.
where is the magnetic flux density, or magnetic flux per unit area at a given point in space. The simplest example of such a system is a single circular coil of conductive wire immersed in a magnetic field, in which case the flux linkage is simply the flux passing through the loop.
It is the property of certain substances or phenomena that give rise to magnetic fields: =, where Φ is the magnetic flux and is the reluctance of the circuit. It can be seen that the magnetomotive force plays a role in this equation analogous to the voltage V in Ohm's law , V = IR , since it is the cause of magnetic flux in a magnetic circuit ...
In physics, the Poynting vector (or Umov–Poynting vector) represents the directional energy flux (the energy transfer per unit area, per unit time) or power flow of an electromagnetic field. The SI unit of the Poynting vector is the watt per square metre (W/m 2 ); kg/s 3 in base SI units.