enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gaussian elimination - Wikipedia

    en.wikipedia.org/wiki/Gaussian_elimination

    A variant of Gaussian elimination called Gauss–Jordan elimination can be used for finding the inverse of a matrix, if it exists. If A is an n × n square matrix, then one can use row reduction to compute its inverse matrix, if it exists. First, the n × n identity matrix is augmented to the right of A, forming an n × 2n block matrix [A | I].

  3. LU decomposition - Wikipedia

    en.wikipedia.org/wiki/LU_decomposition

    Computers usually solve square systems of linear equations using LU decomposition, and it is also a key step when inverting a matrix or computing the determinant of a matrix. The LU decomposition was introduced by the Polish astronomer Tadeusz Banachiewicz in 1938. [1] To quote: "It appears that Gauss and Doolittle applied the method [of ...

  4. Matrix decomposition - Wikipedia

    en.wikipedia.org/wiki/Matrix_decomposition

    Comments: The LUP and LU decompositions are useful in solving an n-by-n system of linear equations =. These decompositions summarize the process of Gaussian elimination in matrix form. Matrix P represents any row interchanges carried out in the process of Gaussian elimination.

  5. Schur complement - Wikipedia

    en.wikipedia.org/wiki/Schur_complement

    The Schur complement arises when performing a block Gaussian elimination on the matrix M.In order to eliminate the elements below the block diagonal, one multiplies the matrix M by a block lower triangular matrix on the right as follows: = [] [] [] = [], where I p denotes a p×p identity matrix.

  6. Elimination theory - Wikipedia

    en.wikipedia.org/wiki/Elimination_theory

    In commutative algebra and algebraic geometry, elimination theory is the classical name for algorithmic approaches to eliminating some variables between polynomials of several variables, in order to solve systems of polynomial equations. Classical elimination theory culminated with the work of Francis Macaulay on multivariate resultants, as ...

  7. Tridiagonal matrix algorithm - Wikipedia

    en.wikipedia.org/wiki/Tridiagonal_matrix_algorithm

    In numerical linear algebra, the tridiagonal matrix algorithm, also known as the Thomas algorithm (named after Llewellyn Thomas), is a simplified form of Gaussian elimination that can be used to solve tridiagonal systems of equations. A tridiagonal system for n unknowns may be written as

  8. Gaussian algorithm - Wikipedia

    en.wikipedia.org/wiki/Gaussian_algorithm

    Gaussian algorithm may refer to: Gaussian elimination for solving systems of linear equations; Gauss's algorithm for Determination of the day of the week; Gauss's method for preliminary orbit determination; Gauss's Easter algorithm; Gauss separation algorithm

  9. Preconditioner - Wikipedia

    en.wikipedia.org/wiki/Preconditioner

    Preconditioned iterative solvers typically outperform direct solvers, e.g., Gaussian elimination, for large, especially for sparse, matrices. Iterative solvers can be used as matrix-free methods , i.e. become the only choice if the coefficient matrix A {\displaystyle A} is not stored explicitly, but is accessed by evaluating matrix-vector products.