enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Normal distribution - Wikipedia

    en.wikipedia.org/wiki/Normal_distribution

    The simplest case of a normal distribution is known as the standard normal distribution or unit normal distribution. This is a special case when μ = 0 {\textstyle \mu =0} and σ 2 = 1 {\textstyle \sigma ^{2}=1} , and it is described by this probability density function (or density): φ ( z ) = e − z 2 2 2 π . {\displaystyle \varphi (z ...

  3. List of probability distributions - Wikipedia

    en.wikipedia.org/wiki/List_of_probability...

    The negative hypergeometric distribution, a distribution which describes the number of attempts needed to get the nth success in a series of Yes/No experiments without replacement. The Poisson binomial distribution, which describes the number of successes in a series of independent Yes/No experiments with different success probabilities.

  4. Multivariate normal distribution - Wikipedia

    en.wikipedia.org/wiki/Multivariate_normal...

    The equation above reduces to that of the univariate normal distribution if is a matrix (i.e., a single real number). The circularly symmetric version of the complex normal distribution has a slightly different form.

  5. Gaussian function - Wikipedia

    en.wikipedia.org/wiki/Gaussian_function

    Specifically, if the mass-density at time t=0 is given by a Dirac delta, which essentially means that the mass is initially concentrated in a single point, then the mass-distribution at time t will be given by a Gaussian function, with the parameter a being linearly related to 1/ √ t and c being linearly related to √ t; this time-varying ...

  6. Matrix normal distribution - Wikipedia

    en.wikipedia.org/wiki/Matrix_normal_distribution

    The probability density function for the random matrix X (n × p) that follows the matrix normal distribution , (,,) has the form: (,,) = ⁡ ([() ()]) / | | / | | /where denotes trace and M is n × p, U is n × n and V is p × p, and the density is understood as the probability density function with respect to the standard Lebesgue measure in , i.e.: the measure corresponding to integration ...

  7. Independent and identically distributed random variables

    en.wikipedia.org/wiki/Independent_and...

    Even if the sample originates from a complex non-Gaussian distribution, it can be well-approximated because the CLT allows it to be simplified to a Gaussian distribution ("for a large number of observable samples, the sum of many random variables will have an approximately normal distribution").

  8. 68–95–99.7 rule - Wikipedia

    en.wikipedia.org/wiki/68–95–99.7_rule

    Diagram showing the cumulative distribution function for the normal distribution with mean (μ) 0 and variance (σ 2) 1. These numerical values "68%, 95%, 99.7%" come from the cumulative distribution function of the normal distribution. The prediction interval for any standard score z corresponds numerically to (1 − (1 − Φ μ,σ 2 (z)) · 2).

  9. Student's t-distribution - Wikipedia

    en.wikipedia.org/wiki/Student's_t-distribution

    The reason for the usefulness of this characterization is that in Bayesian statistics the inverse gamma distribution is the conjugate prior distribution of the variance of a Gaussian distribution. As a result, the location-scale t distribution arises naturally in many Bayesian inference problems.