Search results
Results from the WOW.Com Content Network
The direct sum is also commutative up to isomorphism, i.e. for any algebraic structures and of the same kind. The direct sum of finitely many abelian groups, vector spaces, or modules is canonically isomorphic to the corresponding direct product. This is false, however, for some algebraic objects, like nonabelian groups.
The subspace V × {0} of V ⊕ W is isomorphic to V and is often identified with V; similarly for {0} × W and W. (See internal direct sum below.) With this identification, every element of V ⊕ W can be written in one and only one way as the sum of an element of V and an element of W. The dimension of V ⊕ W is equal to the sum of the ...
This applies also when E and F are linear subspaces or submodules of the vector space or module V. 2. Direct sum: if E and F are two abelian groups, vector spaces, or modules, then their direct sum, denoted is an abelian group, vector space, or module (respectively) equipped with two monomorphisms: and : such that is the internal direct sum of ...
An indecomposable module is a non-zero module that cannot be written as a direct sum of two non-zero submodules. Every simple module is indecomposable, but there are indecomposable modules that are not simple (e.g. uniform modules). Faithful A faithful module M is one where the action of each r ≠ 0 in R on M is nontrivial (i.e. r ⋅ x ≠ 0 ...
If (V,φ) and (W,ψ) are representations of (say) a group G, then the direct sum of V and W is a representation, in a canonical way, via the equation (,) = (,). The direct sum of two representations carries no more information about the group G than the two representations do individually. If a representation is the direct sum of two proper ...
The symmetric tensors of degree n form a vector subspace (or module) Sym n (V) ⊂ T n (V). The symmetric tensors are the elements of the direct sum = (), which is a graded vector space (or a graded module). It is not an algebra, as the tensor product of two symmetric tensors is not symmetric in general.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The binary operation, called vector addition or simply addition assigns to any two vectors v and w in V a third vector in V which is commonly written as v + w, and called the sum of these two vectors. The binary function, called scalar multiplication, assigns to any scalar a in F and any vector v in V another vector in V, which is denoted av ...