Search results
Results from the WOW.Com Content Network
The superflip is a completely symmetrical combination, which means applying a superflip algorithm to the cube will always yield the same position, irrespective of the orientation in which the cube is held. The superflip is self-inverse; i.e. performing a superflip algorithm twice will bring the cube back to the starting position.
A solved Rubik's Revenge cube. The Rubik's Revenge (also known as the 4×4×4 Rubik's Cube) is a 4×4×4 version of the Rubik's Cube.It was released in 1981. Invented by Péter Sebestény, the cube was nearly called the Sebestény Cube until a somewhat last-minute decision changed the puzzle's name to attract fans of the original Rubik's Cube. [1]
As mentioned above, if a triangle is non-Delaunay, we can flip one of its edges. This leads to a straightforward algorithm: construct any triangulation of the points, and then flip edges until no triangle is non-Delaunay. Unfortunately, this can take Ω(n 2) edge flips. [10]
A Rubik's Cube is in the superflip pattern when each corner piece is in the correct position, but each edge piece is incorrectly oriented. [6] In 1992, a solution for the superflip with 20 face turns was found by Dik T. Winter , of which the minimality was shown in 1995 by Michael Reid , providing a new lower bound for the diameter of the cube ...
The flip distance between two triangulations is the minimum number of flips needed to transform one triangulation into another. [1] It can also be described as the shortest path distance in a flip graph, a graph that has a vertex for each triangulation and an edge for each flip between two triangulations. [1]
In geometry, a domino tiling of a region in the Euclidean plane is a tessellation of the region by dominoes, shapes formed by the union of two unit squares meeting edge-to-edge. Equivalently, it is a perfect matching in the grid graph formed by placing a vertex at the center of each square of the region and connecting two vertices when they ...
An algorithm defines a sequence of layer rotations to transform a given state to another (usually less scrambled) state. Usually an algorithm is expressed as a printable character sequence according to some move notation. An algorithm can be considered to be a "smart" move. All algorithms are moves, but few moves are considered to be algorithms.
The manipulations of the Rubik's Cube form the Rubik's Cube group. The Rubik's Cube group (,) represents the structure of the Rubik's Cube mechanical puzzle.Each element of the set corresponds to a cube move, which is the effect of any sequence of rotations of the cube's faces.