Search results
Results from the WOW.Com Content Network
The nearest neighbor graph (NNG) is a directed graph defined for a set of points in a metric space, such as the Euclidean distance in the plane. The NNG has a vertex for each point, and a directed edge from p to q whenever q is a nearest neighbor of p, a point whose distance from p is minimum among all the given points other than p itself. [1]
The closest pair of points problem or closest pair problem is a problem of computational geometry: given points in metric space, find a pair of points with the smallest distance between them. The closest pair problem for points in the Euclidean plane [ 1 ] was among the first geometric problems that were treated at the origins of the systematic ...
If all the vertices in the domain are visited, then terminate. Else, go to step 3. The sequence of the visited vertices is the output of the algorithm. The nearest neighbour algorithm is easy to implement and executes quickly, but it can sometimes miss shorter routes which are easily noticed with human insight, due to its "greedy" nature.
A point location data structure can be built on top of the Voronoi diagram in order to answer nearest neighbor queries, where one wants to find the object that is closest to a given query point. Nearest neighbor queries have numerous applications. For example, one might want to find the nearest hospital or the most similar object in a database.
Proximity graph methods (such as navigable small world graphs [10] and HNSW [11] [12]) are considered the current state-of-the-art for the approximate nearest neighbors search. The methods are based on greedy traversing in proximity neighborhood graphs G ( V , E ) {\displaystyle G(V,E)} in which every point x i ∈ S {\displaystyle x_{i}\in S ...
The closest neighbor b to any point p is on an edge bp in the Delaunay triangulation since the nearest neighbor graph is a subgraph of the Delaunay triangulation. The Delaunay triangulation is a geometric spanner : In the plane ( d = 2 ), the shortest path between two vertices, along Delaunay edges, is known to be no longer than 1.998 times the ...
In graph theory, this means finding a set of k vertices for which the largest distance of any point to its closest vertex in the k-set is minimum. The vertices must be in a metric space, providing a complete graph that satisfies the triangle inequality. It has application in facility location and clustering. [1] [2]
Zhang [4] proposes a modified k-d tree algorithm for efficient closest point computation. In this work a statistical method based on the distance distribution is used to deal with outliers, occlusion, appearance, and disappearance, which enables subset-subset matching.