Search results
Results from the WOW.Com Content Network
Informally, a metric space is complete if it has no "missing points": every sequence that looks like it should converge to something actually converges. To make this precise: a sequence (x n) in a metric space M is Cauchy if for every ε > 0 there is an integer N such that for all m, n > N, d(x m, x n) < ε.
Cartan connection. Cartan-Hadamard space is a complete, simply-connected, non-positively curved Riemannian manifold.. Cartan–Hadamard theorem is the statement that a connected, simply connected complete Riemannian manifold with non-positive sectional curvature is diffeomorphic to R n via the exponential map; for metric spaces, the statement that a connected, simply connected complete ...
The space Aim(X) is injective (hyperconvex in the sense of Aronszajn-Panitchpakdi) – given a metric space M, which contains Aim(X) as a metric subspace, there is a canonical (and explicit) metric retraction of M onto Aim(X) (HolsztyĆski 1966).
The product of a finite set of metric spaces in Met is a metric space that has the cartesian product of the spaces as its points; the distance in the product space is given by the supremum of the distances in the base spaces. That is, it is the product metric with the sup norm. However, the product of an infinite set of metric spaces may not ...
The space (0,1) ⊂ R, the open unit interval, is not a complete metric space with its usual metric inherited from R, but it is completely metrizable since it is homeomorphic to R. [6] The space Q of rational numbers with the subspace topology inherited from R is metrizable but not completely metrizable. [7]
The function d is a metric on M, and d(x, y) is the distance between x and y. The collection of all open balls of M is a base for a topology on M; this is the topology on M induced by d. Every metric space is Hausdorff and paracompact (and hence normal and Tychonoff). Every metric space is first-countable. Metrizable/Metrisable
In general, when we define metric space the distance function is taken to be a real-valued function. The real numbers form an ordered field which is Archimedean and order complete. These metric spaces have some nice properties like: in a metric space compactness, sequential compactness and countable compactness are equivalent etc.
Then the Finsler metric is the sum of a locally Minkovski metric and a closed 1-form. [16] Let (M, g) be a compact symmetric Riemannian space of rank greater than one. If F is a symmetric Finsler metric whose geodesics coincide with geodesics of the Riemannian metric g, then (M, g) is a symmetric Finsler space. [16]