enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. De quinque corporibus regularibus - Wikipedia

    en.wikipedia.org/wiki/De_quinque_corporibus...

    Truncated icosahedron, one of the Archimedean solids illustrated in De quinque corporibus regularibus. The five Platonic solids (the regular tetrahedron, cube, octahedron, dodecahedron, and icosahedron) were known to della Francesca through two classical sources: Timaeus, in which Plato theorizes that four of them correspond to the classical elements making up the world (with the fifth, the ...

  3. Platonic solid - Wikipedia

    en.wikipedia.org/wiki/Platonic_solid

    The Platonic solids have been known since antiquity. It has been suggested that certain carved stone balls created by the late Neolithic people of Scotland represent these shapes; however, these balls have rounded knobs rather than being polyhedral, the numbers of knobs frequently differed from the numbers of vertices of the Platonic solids, there is no ball whose knobs match the 20 vertices ...

  4. Perspectiva corporum regularium - Wikipedia

    en.wikipedia.org/wiki/Perspectiva_Corporum...

    A copy of Perspectiva corporum regularium in the Metropolitan Museum of Art, open to one of the pages depicting variations of the dodecahedron. Perspectiva corporum regularium (from Latin: Perspective of the Regular Solids) is a book of perspective drawings of polyhedra by German Renaissance goldsmith Wenzel Jamnitzer, with engravings by Jost Amman, published in 1568.

  5. Timeline of ancient Greek mathematicians - Wikipedia

    en.wikipedia.org/wiki/Timeline_of_ancient_Greek...

    The last book (Book XIII) of the Euclid's Elements, which is probably derived from the work of Theaetetus, is devoted to constructing the Platonic solids and describing their properties; Andreas Speiser has advocated the view that the construction of the 5 regular solids is the chief goal of the deductive system canonized in the Elements. [2]

  6. Wenzel Jamnitzer - Wikipedia

    en.wikipedia.org/wiki/Wenzel_Jamnitzer

    Jamnitzer performed scientific studies to improve the technical knowledge of his guild. In 1568 he published Perspectiva Corporum Regularium (Perspective of regular solids), a book remembered for its engravings of polyhedra. This book was based on Plato's Timaeus and Euclid's Elements, and it contained 120 forms based on the Platonic solids. [1]

  7. Tetrahedron - Wikipedia

    en.wikipedia.org/wiki/Tetrahedron

    A solid angle of π sr is one quarter of that subtended by all of space. When all the solid angles at the vertices of a tetrahedron are smaller than π sr, O lies inside the tetrahedron, and because the sum of distances from O to the vertices is a minimum, O coincides with the geometric median , M , of the vertices.

  8. Regular 4-polytope - Wikipedia

    en.wikipedia.org/wiki/Regular_4-polytope

    Each convex regular 4-polytope is bounded by a set of 3-dimensional cells which are all Platonic solids of the same type and size. These are fitted together along their respective faces (face-to-face) in a regular fashion, forming the surface of the 4-polytope which is a closed, curved 3-dimensional space (analogous to the way the surface of ...

  9. 4-polytope - Wikipedia

    en.wikipedia.org/wiki/4-polytope

    The convex regular 4-polytopes are the four-dimensional analogues of the Platonic solids. The most familiar 4-polytope is the tesseract or hypercube, the 4D analogue of the cube. The convex regular 4-polytopes can be ordered by size as a measure of 4-dimensional content (hypervolume) for the same radius.