Ads
related to: spectral layout example in geometry equation worksheet
Search results
Results from the WOW.Com Content Network
Spectral shape analysis relies on the spectrum (eigenvalues and/or eigenfunctions) of the Laplace–Beltrami operator to compare and analyze geometric shapes. Since the spectrum of the Laplace–Beltrami operator is invariant under isometries, it is well suited for the analysis or retrieval of non-rigid shapes, i.e. bendable objects such as humans, animals, plants, etc.
Spectral layout is a class of algorithm for drawing graphs. The layout uses the eigenvectors of a matrix, such as the Laplace matrix of the graph, as Cartesian coordinates of the graph's vertices. The idea of the layout is to compute the two largest (or smallest) eigenvalues and corresponding eigenvectors of the Laplacian matrix of the graph ...
Spectral geometry is a field in mathematics which concerns relationships between geometric structures of manifolds and spectra of canonically defined differential operators. The case of the Laplace–Beltrami operator on a closed Riemannian manifold has been most intensively studied, although other Laplace operators in differential geometry ...
In mathematics, or more specifically in spectral theory, the Riesz projector is the projector onto the eigenspace corresponding to a particular eigenvalue of an operator (or, more generally, a projector onto an invariant subspace corresponding to an isolated part of the spectrum).
Among other uses, the resolvent may be used to solve the inhomogeneous Fredholm integral equations; a commonly used approach is a series solution, the Liouville–Neumann series. The resolvent of A can be used to directly obtain information about the spectral decomposition of A. For example, suppose λ is an isolated eigenvalue in the spectrum ...
This decomposition is relevant to the study of differential equations, and has applications to many branches of science and engineering. A well-known example from quantum mechanics is the explanation for the discrete spectral lines and the continuous band in the light emitted by excited atoms of hydrogen.
If X is a Hilbert space and T is a self-adjoint operator (or, more generally, a normal operator), then a remarkable result known as the spectral theorem gives an analogue of the diagonalisation theorem for normal finite-dimensional operators (Hermitian matrices, for example).
The topological recursion is a construction in algebraic geometry. [1] It takes as initial data a spectral curve: the data of (,,,,,), where: : is a covering of Riemann surfaces with ramification points; , is a meromorphic differential 1-form on , regular at the ramification points; , is a symmetric meromorphic bilinear differential form on having a double pole on the diagonal and no residue.
Ads
related to: spectral layout example in geometry equation worksheet