Search results
Results from the WOW.Com Content Network
Taking the derivative of P(x) with respect to , setting it to 0, and solving for x, we find that the optimal x is equal to 1/e. Thus, the optimal cutoff tends to n/e as n increases, and the best applicant is selected with probability 1/e. For small values of n, the optimal r can also be obtained by standard dynamic programming methods.
Unlike a probability, a probability density function can take on values greater than one; for example, the continuous uniform distribution on the interval [0, 1/2] has probability density f(x) = 2 for 0 ≤ x ≤ 1/2 and f(x) = 0 elsewhere.
According to this definition, E[X] exists and is finite if and only if E[X +] and E[X −] are both finite. Due to the formula |X| = X + + X −, this is the case if and only if E|X| is finite, and this is equivalent to the absolute convergence conditions in the definitions above. As such, the present considerations do not define finite ...
Thus, the full forward/backward algorithm takes into account all evidence. Note that a belief state can be calculated at each time step, but doing this does not, in a strict sense, produce the most likely state sequence, but rather the most likely state at each time step
where P(t) is the transition matrix of jump t, i.e., P(t) is the matrix such that entry (i,j) contains the probability of the chain moving from state i to state j in t steps. As a corollary, it follows that to calculate the transition matrix of jump t, it is sufficient to raise the transition matrix of jump one to the power of t, that is
Consider a sequence (X n) n∈ of i.i.d. (Independent and identically distributed random variables) random variables, taking each of the two values 0 and 1 with probability 1 / 2 (actually, only X 1 is needed in the following). Define N = 1 – X 1.
In probability theory, the rule of succession is a formula introduced in the 18th century by Pierre-Simon Laplace in the course of treating the sunrise problem. [1] The formula is still used, particularly to estimate underlying probabilities when there are few observations or events that have not been observed to occur at all in (finite) sample data.
Bayes' theorem says that the posterior probability measure is proportional to the product of the prior probability measure and the likelihood function. Proportional to implies that one must multiply or divide by a normalizing constant to assign measure 1 to the whole space, i.e., to get a probability measure.