enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Enthalpy - Wikipedia

    en.wikipedia.org/wiki/Enthalpy

    Enthalpy (/ ˈ ɛ n θ əl p i / ⓘ) is the sum of a thermodynamic system's internal energy and the product of its pressure and volume. [1] It is a state function in thermodynamics used in many measurements in chemical, biological, and physical systems at a constant external pressure, which is conveniently provided by the large ambient atmosphere.

  3. Heat of combustion - Wikipedia

    en.wikipedia.org/wiki/Heat_of_combustion

    energy/mole of fuel; energy/mass of fuel; energy/volume of the fuel; There are two kinds of enthalpy of combustion, called high(er) and low(er) heat(ing) value, depending on how much the products are allowed to cool and whether compounds like H 2 O are allowed to condense. The high heat values are conventionally measured with a bomb calorimeter ...

  4. Heat - Wikipedia

    en.wikipedia.org/wiki/Heat

    The enthalpy may be considered to be a function H(S, P) of its natural variables S and P. The enthalpy representation of the fundamental thermodynamic relation is written [89] [90] = (,). The internal energy representation and the enthalpy representation are partial Legendre transforms of one another. They contain the same physical information ...

  5. Laws of thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Laws_of_thermodynamics

    In a closed system (i.e. there is no transfer of matter into or out of the system), the first law states that the change in internal energy of the system (ΔU system) is equal to the difference between the heat supplied to the system (Q) and the work (W) done by the system on its surroundings.

  6. Internal energy - Wikipedia

    en.wikipedia.org/wiki/Internal_energy

    The internal energy of a thermodynamic system is the energy of the system as a state function, measured as the quantity of energy necessary to bring the system from its standard internal state to its present internal state of interest, accounting for the gains and losses of energy due to changes in its internal state, including such quantities as magnetization.

  7. Fundamental thermodynamic relation - Wikipedia

    en.wikipedia.org/wiki/Fundamental_thermodynamic...

    In general, the energy eigenstates of the system will depend on x. According to the adiabatic theorem of quantum mechanics, in the limit of an infinitely slow change of the system's Hamiltonian, the system will stay in the same energy eigenstate and thus change its energy according to the change in energy of the energy eigenstate it is in.

  8. Activation energy - Wikipedia

    en.wikipedia.org/wiki/Activation_energy

    Activation energy can be thought of as the magnitude of the potential barrier (sometimes called the energy barrier) separating minima of the potential energy surface pertaining to the initial and final thermodynamic state. For a chemical reaction to proceed at a reasonable rate, the temperature of the system should be high enough such that ...

  9. Enthalpy of vaporization - Wikipedia

    en.wikipedia.org/wiki/Enthalpy_of_vaporization

    The increase in the internal energy can be viewed as the energy required to overcome the intermolecular interactions in the liquid (or solid, in the case of sublimation). Hence helium has a particularly low enthalpy of vaporization, 0.0845 kJ/mol, as the van der Waals forces between helium atoms are particularly weak.