enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Optimization problem - Wikipedia

    en.wikipedia.org/wiki/Optimization_problem

    The goal is then to find for some instance x an optimal solution, that is, a feasible solution y with (,) = {(, ′): ′ ()}. For each combinatorial optimization problem, there is a corresponding decision problem that asks whether there is a feasible solution for some particular measure m 0 .

  3. Mathematical optimization - Wikipedia

    en.wikipedia.org/wiki/Mathematical_optimization

    Infinite-dimensional optimization studies the case when the set of feasible solutions is a subset of an infinite-dimensional space, such as a space of functions. Heuristics and metaheuristics make few or no assumptions about the problem being optimized. Usually, heuristics do not guarantee that any optimal solution need be found.

  4. Basic feasible solution - Wikipedia

    en.wikipedia.org/wiki/Basic_feasible_solution

    A basis B of the LP is called dual-optimal if the solution = is an optimal solution to the dual linear program, that is, it minimizes . In general, a primal-optimal basis is not necessarily dual-optimal, and a dual-optimal basis is not necessarily primal-optimal (in fact, the solution of a primal-optimal basis may even be unfeasible for the ...

  5. Branch and bound - Wikipedia

    en.wikipedia.org/wiki/Branch_and_bound

    B will denote the best solution found so far, and will be used as an upper bound on candidate solutions. Initialize a queue to hold a partial solution with none of the variables of the problem assigned. Loop until the queue is empty: Take a node N off the queue. If N represents a single candidate solution x and f(x) < B, then x is the best ...

  6. Gap reduction - Wikipedia

    en.wikipedia.org/wiki/Gap_reduction

    Here, the best solution to instance x of problem P has a cost above c⋅k. The gap between the two thresholds is thus c. Note that whenever OPT falls between the thresholds, there is no requirement on what the output should be. A valid algorithm for the c-gap problem may answer anything if OPT is in the middle of the gap.

  7. Multi-objective optimization - Wikipedia

    en.wikipedia.org/wiki/Multi-objective_optimization

    Multi-objective optimization or Pareto optimization (also known as multi-objective programming, vector optimization, multicriteria optimization, or multiattribute optimization) is an area of multiple-criteria decision making that is concerned with mathematical optimization problems involving more than one objective function to be optimized simultaneously.

  8. Bilevel optimization - Wikipedia

    en.wikipedia.org/wiki/Bilevel_optimization

    If the follower has more than one optimal response to a certain selection of the leader, there are two possible options: either the best or the worst follower's solution with respect to the leader's objective function is assumed, i.e. the follower is assumed to act either in a cooperative way or in an aggressive way.

  9. Optimal decision - Wikipedia

    en.wikipedia.org/wiki/Optimal_decision

    An optimal decision is a decision that leads to at least as good a known or expected outcome as all other available decision options. It is an important concept in decision theory . In order to compare the different decision outcomes, one commonly assigns a utility value to each of them.