enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Birational geometry - Wikipedia

    en.wikipedia.org/wiki/Birational_geometry

    The "Weak factorization theorem", proved by Abramovich, Karu, Matsuki, and Włodarczyk , says that any birational map between two smooth complex projective varieties can be decomposed into finitely many blow-ups or blow-downs of smooth subvarieties. This is important to know, but it can still be very hard to determine whether two smooth ...

  3. Blowing up - Wikipedia

    en.wikipedia.org/wiki/Blowing_up

    The weak factorization theorem says that every birational map can be factored as a composition of particularly simple blowups. The Cremona group, the group of birational automorphisms of the plane, is generated by blowups. Besides their importance in describing birational transformations, blowups are also an important way of constructing new ...

  4. Zariski's main theorem - Wikipedia

    en.wikipedia.org/wiki/Zariski's_main_theorem

    A birational morphism with finite fibers to a normal variety is an isomorphism to an open subset. The total transform of a normal fundamental point of a birational map has positive dimension. This is essentially Zariski's original version. The total transform of a normal point under a proper birational morphism is connected.

  5. Flip (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Flip_(mathematics)

    The natural birational map from to is the Atiyah flop. Reid (1983) introduced ... Flops, flips, and matrix factorization (PDF), Algebraic Geometry and Beyond, RIMS, ...

  6. Morphism of algebraic varieties - Wikipedia

    en.wikipedia.org/wiki/Morphism_of_algebraic...

    The composition of regular maps is again regular; thus, algebraic varieties form the category of algebraic varieties where the morphisms are the regular maps. Regular maps between affine varieties correspond contravariantly in one-to-one to algebra homomorphisms between the coordinate rings: if f : X → Y is a morphism of affine varieties ...

  7. Glossary of algebraic geometry - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_algebraic_geometry

    birational morphism A birational morphism between schemes is a morphism that becomes an isomorphism after restricted to some open dense subset. One of the most common examples of a birational map is the map induced by a blowup. blow-up A blow-up is a

  8. Resolution of singularities - Wikipedia

    en.wikipedia.org/wiki/Resolution_of_singularities

    In algebraic geometry, the problem of resolution of singularities asks whether every algebraic variety V has a resolution, which is a non-singular variety W with a proper birational map W→V. For varieties over fields of characteristic 0 , this was proved by Heisuke Hironaka in 1964; [ 1 ] while for varieties of dimension at least 4 over ...

  9. Rational mapping - Wikipedia

    en.wikipedia.org/wiki/Rational_mapping

    Formally, a rational map: between two varieties is an equivalence class of pairs (,) in which is a morphism of varieties from a non-empty open set to , and two such pairs (,) and (′ ′, ′) are considered equivalent if and ′ ′ coincide on the intersection ′ (this is, in particular, vacuously true if the intersection is empty, but since is assumed irreducible, this is impossible).