Search results
Results from the WOW.Com Content Network
The "Weak factorization theorem", proved by Abramovich, Karu, Matsuki, and Włodarczyk , says that any birational map between two smooth complex projective varieties can be decomposed into finitely many blow-ups or blow-downs of smooth subvarieties. This is important to know, but it can still be very hard to determine whether two smooth ...
The weak factorization theorem says that every birational map can be factored as a composition of particularly simple blowups. The Cremona group, the group of birational automorphisms of the plane, is generated by blowups. Besides their importance in describing birational transformations, blowups are also an important way of constructing new ...
A birational morphism with finite fibers to a normal variety is an isomorphism to an open subset. The total transform of a normal fundamental point of a birational map has positive dimension. This is essentially Zariski's original version. The total transform of a normal point under a proper birational morphism is connected.
The natural birational map from to is the Atiyah flop. Reid (1983) introduced ... Flops, flips, and matrix factorization (PDF), Algebraic Geometry and Beyond, RIMS, ...
The composition of regular maps is again regular; thus, algebraic varieties form the category of algebraic varieties where the morphisms are the regular maps. Regular maps between affine varieties correspond contravariantly in one-to-one to algebra homomorphisms between the coordinate rings: if f : X → Y is a morphism of affine varieties ...
birational morphism A birational morphism between schemes is a morphism that becomes an isomorphism after restricted to some open dense subset. One of the most common examples of a birational map is the map induced by a blowup. blow-up A blow-up is a
In algebraic geometry, the problem of resolution of singularities asks whether every algebraic variety V has a resolution, which is a non-singular variety W with a proper birational map W→V. For varieties over fields of characteristic 0 , this was proved by Heisuke Hironaka in 1964; [ 1 ] while for varieties of dimension at least 4 over ...
Formally, a rational map: between two varieties is an equivalence class of pairs (,) in which is a morphism of varieties from a non-empty open set to , and two such pairs (,) and (′ ′, ′) are considered equivalent if and ′ ′ coincide on the intersection ′ (this is, in particular, vacuously true if the intersection is empty, but since is assumed irreducible, this is impossible).