enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Squeeze flow - Wikipedia

    en.wikipedia.org/wiki/Squeeze_flow

    To measure macroscopic squeeze flow effects, models exist for two the most common surfaces: circular and rectangular plate squeeze flows. Single asperity squeeze flow diagram at initial and follow-on conditions; plates (assumed to be semi-infinite, in gray), droplet (green).

  3. Parallel-plate flow chamber - Wikipedia

    en.wikipedia.org/wiki/Parallel-Plate_Flow_Chamber

    The parallel-plate flow chamber, in its original design, is capable of producing well-defined wall shear-stress in the physiological range of 0.01-30 dyn/cm 2.Shear stress is generated by flowing fluid (e.g., anticoagulated whole blood or isolated cell suspensions) through the chamber over the immobilized substrate under controlled kinematic conditions using a syringe pump.

  4. Shear stress - Wikipedia

    en.wikipedia.org/wiki/Shear_stress

    The region between these two points is named the boundary layer. For all Newtonian fluids in laminar flow, the shear stress is proportional to the strain rate in the fluid, where the viscosity is the constant of proportionality. For non-Newtonian fluids, the viscosity is not constant. The shear stress is imparted onto the boundary as a result ...

  5. Oblique subduction - Wikipedia

    en.wikipedia.org/wiki/Oblique_subduction

    In this way, the relative motion between the overriding plate and the subducting plate is almost perpendicular to the plate boundary. [1] Adapted from Westbrook, 2005. [1] Oblique subduction is a form of subduction (i.e. a tectonic process involving the convergence of two plates where the denser plate descends into Earth's interior) [2] for ...

  6. Shear flow - Wikipedia

    en.wikipedia.org/wiki/Shear_flow

    In these instances, it can be useful to express internal shear stress as shear flow, which is found as the shear stress multiplied by the thickness of the section. An equivalent definition for shear flow is the shear force V per unit length of the perimeter around a thin-walled section. Shear flow has the dimensions of force per unit of length. [1]

  7. Plate theory - Wikipedia

    en.wikipedia.org/wiki/Plate_theory

    The typical thickness to width ratio of a plate structure is less than 0.1. [citation needed] A plate theory takes advantage of this disparity in length scale to reduce the full three-dimensional solid mechanics problem to a two-dimensional problem. The aim of plate theory is to calculate the deformation and stresses in a plate subjected to loads.

  8. Stress resultants - Wikipedia

    en.wikipedia.org/wiki/Stress_resultants

    Stress resultants are simplified representations of the stress state in structural elements such as beams, plates, or shells. [1] The geometry of typical structural elements allows the internal stress state to be simplified because of the existence of a "thickness'" direction in which the size of the element is much smaller than in other directions.

  9. Blasius boundary layer - Wikipedia

    en.wikipedia.org/wiki/Blasius_boundary_layer

    A schematic diagram of the Blasius flow profile. The streamwise velocity component () / is shown, as a function of the similarity variable .. Using scaling arguments, Ludwig Prandtl [1] argued that about half of the terms in the Navier-Stokes equations are negligible in boundary layer flows (except in a small region near the leading edge of the plate).