enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Plate theory - Wikipedia

    en.wikipedia.org/wiki/Plate_theory

    The shear strain, and hence the shear stress, across the thickness of the plate is not neglected in this theory. However, the shear strain is constant across the thickness of the plate. This cannot be accurate since the shear stress is known to be parabolic even for simple plate geometries.

  3. Oblique subduction - Wikipedia

    en.wikipedia.org/wiki/Oblique_subduction

    During oblique subduction, the convergence and coupling between two plates create horizontal shear stress on the overriding plate. [10] Early studies suggested that horizontal shear is likely to concentrate in vertical planes. [10] Together with the field measurements on seismicity. [10]

  4. Strain partitioning - Wikipedia

    en.wikipedia.org/wiki/Strain_partitioning

    Block diagram illustrating the difference between homogeneous and partitioned strain within transpressive and transtensive tectonic regimes. The partitioning of strain occurs through the development of a strike slip or shear zone (shown with red arrows) across the actively deforming region (brown).

  5. Shear stress - Wikipedia

    en.wikipedia.org/wiki/Shear_stress

    The region between these two points is named the boundary layer. For all Newtonian fluids in laminar flow, the shear stress is proportional to the strain rate in the fluid, where the viscosity is the constant of proportionality. For non-Newtonian fluids, the viscosity is not constant. The shear stress is imparted onto the boundary as a result ...

  6. Reissner-Mindlin plate theory - Wikipedia

    en.wikipedia.org/wiki/Reissner-Mindlin_plate_theory

    The form of Reissner-Mindlin plate theory that is most commonly used is actually due to Mindlin and is more properly called Mindlin plate theory. [3] The Reissner theory is slightly different. Both theories include in-plane shear strains and both are extensions of Kirchhoff–Love plate theory incorporating first-order shear effects.

  7. Stress resultants - Wikipedia

    en.wikipedia.org/wiki/Stress_resultants

    Stress resultants are simplified representations of the stress state in structural elements such as beams, plates, or shells. [1] The geometry of typical structural elements allows the internal stress state to be simplified because of the existence of a "thickness'" direction in which the size of the element is much smaller than in other directions.

  8. Shearing (physics) - Wikipedia

    en.wikipedia.org/wiki/Shearing_(physics)

    The rectangularly-framed section has deformed into a parallelogram (shear strain), but the triangular roof trusses have resisted the shear stress and remain undeformed. In continuum mechanics, shearing refers to the occurrence of a shear strain, which is a deformation of a material substance in which parallel internal surfaces slide past one another.

  9. Bending of plates - Wikipedia

    en.wikipedia.org/wiki/Bending_of_plates

    For rectangular plates, Navier in 1820 introduced a simple method for finding the displacement and stress when a plate is simply supported. The idea was to express the applied load in terms of Fourier components, find the solution for a sinusoidal load (a single Fourier component), and then superimpose the Fourier components to get the solution ...