enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Braking distance - Wikipedia

    en.wikipedia.org/wiki/Braking_distance

    Braking distance refers to the distance a vehicle will travel from the point when its brakes are fully applied to when it comes to a complete stop. It is primarily affected by the original speed of the vehicle and the coefficient of friction between the tires and the road surface, [Note 1] and negligibly by the tires' rolling resistance and vehicle's air drag.

  3. Stopping sight distance - Wikipedia

    en.wikipedia.org/wiki/Stopping_sight_distance

    d MT = braking distance, m (ft) V = design speed, km/h (mph) a = deceleration rate, m/s 2 (ft/s 2) Actual braking distances are affected by the vehicle type and condition, the incline of the road, the available traction, and numerous other factors. A deceleration rate of 3.4 m/s 2 (11.2 ft/s 2) is used to determine stopping sight distance. [6]

  4. Energy-efficient driving - Wikipedia

    en.wikipedia.org/wiki/Energy-efficient_driving

    The main issue with safety and hypermiling is the lack of temperature in the brake system. This is extremely relevant in older vehicles in the winter. Disc brake systems gain efficiency with higher temps. Emergency braking with freezing brakes at highway speeds results in a number of issues from increased stopping distance to pulling to one side.

  5. Brake fade - Wikipedia

    en.wikipedia.org/wiki/Brake_fade

    Because of this, heavy vehicles often use disproportionately weak brakes on steered wheels, which hurts the stopping distance and causes brakes on non-steered wheels to work harder, worsening fade. An advantage of low-fade brakes such as disc brakes is steered wheels can do more braking without causing brake steer. [3]

  6. Assured clear distance ahead - Wikipedia

    en.wikipedia.org/wiki/Assured_Clear_Distance_Ahead

    The time to traverse your stopping distance at travel speed should not be confused with the braking time to come to a full stop, which is a number nearly twice this value ( t= ⁠ v / μ g ⁠ +t ptr). As one is continually slowing down while braking, it will naturally take longer to get to the stopping limit.

  7. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  8. Brake - Wikipedia

    en.wikipedia.org/wiki/Brake

    Since kinetic energy increases quadratically with velocity (= /), an object moving at 10 m/s has 100 times as much energy as one of the same mass moving at 1 m/s, and consequently the theoretical braking distance, when braking at the traction limit, is up to 100 times as long. In practice, fast vehicles usually have significant air drag, and ...

  9. AOL Mail for Verizon Customers - AOL Help

    help.aol.com/products/aol-mail-verizon

    Get live expert help with your AOL needs—from email and passwords, technical questions, mobile email and more. AOL Mail for Verizon Customers AOL Mail welcomes Verizon customers to our safe and delightful email experience!