enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Monoid - Wikipedia

    en.wikipedia.org/wiki/Monoid

    Given two sets M and N endowed with monoid structure (or, in general, any finite number of monoids, M 1, ..., M k), their Cartesian product M × N, with the binary operation and identity element defined on corresponding coordinates, called the direct product, is also a monoid (respectively, M 1 × ⋅⋅⋅ × M k). [5] Fix a monoid M.

  3. Monoidal category - Wikipedia

    en.wikipedia.org/wiki/Monoidal_category

    Any category with finite products can be regarded as monoidal with the product as the monoidal product and the terminal object as the unit. Such a category is sometimes called a cartesian monoidal category. For example: Set, the category of sets with the Cartesian product, any particular one-element set serving as the unit.

  4. Monoid (category theory) - Wikipedia

    en.wikipedia.org/wiki/Monoid_(category_theory)

    A monoid object in the category of monoids (with the direct product of monoids) is just a commutative monoid. This follows easily from the Eckmann–Hilton argument. A monoid object in the category of complete join-semilattices Sup (with the monoidal structure induced by the Cartesian product) is a unital quantale.

  5. Presentation of a monoid - Wikipedia

    en.wikipedia.org/wiki/Presentation_of_a_monoid

    M. Kilp, U. Knauer, A.V. Mikhalev, Monoids, Acts and Categories with Applications to Wreath Products and Graphs, De Gruyter Expositions in Mathematics vol. 29, Walter de Gruyter, 2000, ISBN 3-11-015248-7. Ronald V. Book and Friedrich Otto, String-rewriting Systems, Springer, 1993, ISBN 0-387-97965-4, chapter 7, "Algebraic Properties"

  6. Graph product - Wikipedia

    en.wikipedia.org/wiki/Graph_product

    In graph theory, a graph product is a binary operation on graphs. Specifically, it is an operation that takes two graphs G 1 and G 2 and produces a graph H with the following properties: The vertex set of H is the Cartesian product V ( G 1 ) × V ( G 2 ) , where V ( G 1 ) and V ( G 2 ) are the vertex sets of G 1 and G 2 , respectively.

  7. History monoid - Wikipedia

    en.wikipedia.org/wiki/History_monoid

    History monoids are isomorphic to trace monoids (free partially commutative monoids) and to the monoid of dependency graphs. As such, they are free objects and are universal . The history monoid is a type of semi-abelian categorical product in the category of monoids.

  8. Semigroup - Wikipedia

    en.wikipedia.org/wiki/Semigroup

    Because ~ is a congruence, the set of all congruence classes of ~ forms a semigroup with ∘, called the quotient semigroup or factor semigroup, and denoted S / ~. The mapping x ↦ [x] ~ is a semigroup homomorphism, called the quotient map, canonical surjection or projection; if S is a monoid then quotient semigroup is a monoid with identity ...

  9. Monad (category theory) - Wikipedia

    en.wikipedia.org/wiki/Monad_(category_theory)

    Monads are to monoids as comonads are to comonoids. Every set is a comonoid in a unique way, so comonoids are less familiar in abstract algebra than monoids; however, comonoids in the category of vector spaces with its usual tensor product are important and widely studied under the name of coalgebras .