Search results
Results from the WOW.Com Content Network
However, some problems have distinct optimal solutions; for example, the problem of finding a feasible solution to a system of linear inequalities is a linear programming problem in which the objective function is the zero function (i.e., the constant function taking the value zero everywhere).
A candidate solution does not have to be a likely or reasonable solution to the problem—it is simply in the set that satisfies all constraints; that is, it is in the set of feasible solutions. Algorithms for solving various types of optimization problems often narrow the set of candidate solutions down to a subset of the feasible solutions ...
A sufficient condition for existence and uniqueness of a solution to this problem is that M be symmetric positive-definite. If M is such that LCP(q, M) has a solution for every q, then M is a Q-matrix. If M is such that LCP(q, M) have a unique solution for every q, then M is a P-matrix. Both of these characterizations are sufficient and ...
The simplex algorithm can then be applied to find the solution; this step is called Phase II. If the minimum is positive then there is no feasible solution for the Phase I problem where the artificial variables are all zero. This implies that the feasible region for the original problem is empty, and so the original problem has no solution.
George Bernard Dantzig (/ ˈ d æ n t s ɪ ɡ /; November 8, 1914 – May 13, 2005) was an American mathematical scientist who made contributions to industrial engineering, operations research, computer science, economics, and statistics.
The weak duality theorem says that, for each feasible solution x of the primal and each feasible solution y of the dual: c T x ≤ b T y. In other words, the objective value in each feasible solution of the dual is an upper-bound on the objective value of the primal, and objective value in each feasible solution of the primal is a lower-bound ...
Algorithm Affine-Scaling . Since the actual algorithm is rather complicated, researchers looked for a more intuitive version of it, and in 1985 developed affine scaling, a version of Karmarkar's algorithm that uses affine transformations where Karmarkar used projective ones, only to realize four years later that they had rediscovered an algorithm published by Soviet mathematician I. I. Dikin ...
A penalty method replaces a constrained optimization problem by a series of unconstrained problems whose solutions ideally converge to the solution of the original constrained problem. The unconstrained problems are formed by adding a term, called a penalty function , to the objective function that consists of a penalty parameter multiplied by ...