enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Linear regression - Wikipedia

    en.wikipedia.org/wiki/Linear_regression

    A model with exactly one explanatory variable is a simple linear regression; a model with two or more explanatory variables is a multiple linear regression. [1] This term is distinct from multivariate linear regression, which predicts multiple correlated dependent variables rather than a single dependent variable. [2]

  3. Regression analysis - Wikipedia

    en.wikipedia.org/wiki/Regression_analysis

    In linear regression, the model specification is that the dependent variable, is a linear combination of the parameters (but need not be linear in the independent variables). For example, in simple linear regression for modeling n {\displaystyle n} data points there is one independent variable: x i {\displaystyle x_{i}} , and two parameters, β ...

  4. Least-angle regression - Wikipedia

    en.wikipedia.org/wiki/Least-angle_regression

    In statistics, least-angle regression (LARS) is an algorithm for fitting linear regression models to high-dimensional data, developed by Bradley Efron, Trevor Hastie, Iain Johnstone and Robert Tibshirani. [1] Suppose we expect a response variable to be determined by a linear combination of a subset of potential covariates.

  5. Bivariate analysis - Wikipedia

    en.wikipedia.org/wiki/Bivariate_analysis

    The least squares regression line is a method in simple linear regression for modeling the linear relationship between two variables, and it serves as a tool for making predictions based on new values of the independent variable. The calculation is based on the method of the least squares criterion. The goal is to minimize the sum of the ...

  6. Ordinary least squares - Wikipedia

    en.wikipedia.org/wiki/Ordinary_least_squares

    In statistics, ordinary least squares (OLS) is a type of linear least squares method for choosing the unknown parameters in a linear regression model (with fixed level-one [clarification needed] effects of a linear function of a set of explanatory variables) by the principle of least squares: minimizing the sum of the squares of the differences between the observed dependent variable (values ...

  7. Total least squares - Wikipedia

    en.wikipedia.org/wiki/Total_least_squares

    It is a generalization of Deming regression and also of orthogonal regression, and can be applied to both linear and non-linear models. The total least squares approximation of the data is generically equivalent to the best, in the Frobenius norm, low-rank approximation of the data matrix. [1]

  8. Linear predictor function - Wikipedia

    en.wikipedia.org/wiki/Linear_predictor_function

    For example, a four-way discrete variable of blood type with the possible values "A, B, AB, O" would be converted to separate two-way dummy variables, "is-A, is-B, is-AB, is-O", where only one of them has the value 1 and all the rest have the value 0. This allows for separate regression coefficients to be matched for each possible value of the ...

  9. Linear least squares - Wikipedia

    en.wikipedia.org/wiki/Linear_least_squares

    It is one approach to handling the "errors in variables" problem, and is also sometimes used even when the covariates are assumed to be error-free. Linear Template Fit (LTF) [7] combines a linear regression with (generalized) least squares in order to determine the best estimator. The Linear Template Fit addresses the frequent issue, when the ...