Search results
Results from the WOW.Com Content Network
Images of embryos provide a means of comparing embryos of different ages, and species. To this day, embryo drawings are made in undergraduate developmental biology lessons. Comparing different embryonic stages of different animals is a tool that can be used to infer relationships between species, and thus biological evolution. This has been a ...
The cells of the inner cell mass (embryoblast), which are known as human embryonic stem cells (hESCs), will further differentiate to form four structures: the amnion, the yolk sac, the allantois, and the embryo itself. Human embryonic stem cells are pluripotent, that is, they can differentiate into any of the cell types present in the adult ...
Image showing trophoblast differentiated into the two layers of cytotrophoblast and syncytiotrophoblast during implantation. It is the outer layer of the trophoblasts and actively invades the uterine wall, during implantation, rupturing maternal capillaries and thus establishing an interface between maternal blood and embryonic extracellular fluid, facilitating passive exchange of material ...
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more
In all vertebrates, these progenitor cells differentiate into all adult tissues and organs. [5] In the human embryo, after about three days, the zygote forms a solid mass of cells by mitotic division, called a morula. This then changes to a blastocyst, consisting of an outer layer called a trophoblast, and an inner cell mass called the embryoblast.
Parietal epithelial cell (PEC) Podocyte; Angioblast → Endothelial cell; Mesangial cell. Intraglomerular; Extraglomerular; Juxtaglomerular cell; Macula densa cell; Stromal cell → Interstitial cell → Telocytes; Kidney proximal tubule brush border cell; Kidney distal tubule cell; Connecting tubule cells; α-intercalated cell; β-intercalated ...
Human embryonic development or human embryogenesis is the development and formation of the human embryo.It is characterised by the processes of cell division and cellular differentiation of the embryo that occurs during the early stages of development.
The first cells to migrate through Hensen's node are destined to become the foregut's pharyngeal endoderm. [5] Once deep within the embryo, the endodermal cells migrate anteriorly and eventually displace the hypoblast cells, causing the hypoblast cells to be confined to a region in the area's anterior portion pellucida.