Search results
Results from the WOW.Com Content Network
An optimization problem with discrete variables is known as a discrete optimization, in which an object such as an integer, permutation or graph must be found from a countable set. A problem with continuous variables is known as a continuous optimization, in which an optimal value from a continuous function must be found.
Discrete optimization is a branch of optimization in applied mathematics and computer science. As opposed to continuous optimization , some or all of the variables used in a discrete optimization problem are restricted to be discrete variables —that is, to assume only a discrete set of values, such as the integers .
Mathematical optimization (alternatively spelled optimisation) or mathematical programming is the selection of a best element, with regard to some criteria, from some set of available alternatives. [1] [2] It is generally divided into two subfields: discrete optimization and continuous optimization.
In the discrete time case, if the planning horizon is finite, the problem can also be easily solved by dynamic programming. When the underlying process is determined by a family of (conditional) transition functions leading to a Markov family of transition probabilities, powerful analytical tools provided by the theory of Markov processes can ...
In mathematics and statistics, a quantitative variable may be continuous or discrete if it is typically obtained by measuring or counting, respectively. [1] If it can take on two particular real values such that it can also take on all real values between them (including values that are arbitrarily or infinitesimally close together), the variable is continuous in that interval. [2]
In continuous optimization, A is some subset of the Euclidean space R n, often specified by a set of constraints, equalities or inequalities that the members of A have to satisfy. In combinatorial optimization, A is some subset of a discrete space, like binary strings, permutations, or sets of integers.
On the other hand, discrete choice analysis examines situations in which the potential outcomes are discrete, such that the optimum is not characterized by standard first-order conditions. Thus, instead of examining "how much" as in problems with continuous choice variables, discrete choice analysis examines "which one".
In applied mathematics, discrete modelling is the discrete analogue of continuous modelling. In discrete modelling, discrete formulae are fit to data. A common method in this form of modelling is to use recurrence relation. Discretization concerns the process of transferring continuous models and equations into discrete counterparts, often for ...