enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Reynolds number - Wikipedia

    en.wikipedia.org/wiki/Reynolds_number

    The Reynolds number has wide applications, ranging from liquid flow in a pipe to the passage of air over an aircraft wing. It is used to predict the transition from laminar to turbulent flow and is used in the scaling of similar but different-sized flow situations, such as between an aircraft model in a wind tunnel and the full-size version ...

  3. Laminar–turbulent transition - Wikipedia

    en.wikipedia.org/wiki/Laminarturbulent_transition

    The main parameter characterizing transition is the Reynolds number. Transition is often described as a process proceeding through a series of stages. Transitional flow can refer to transition in either direction, that is laminar–turbulent transitional or turbulent–laminar transitional flow.

  4. Flow separation - Wikipedia

    en.wikipedia.org/wiki/Flow_separation

    A reasonable assessment of whether the boundary layer will be laminar or turbulent can be made by calculating the Reynolds number of the local flow conditions. Separation occurs in flow that is slowing down, with pressure increasing, after passing the thickest part of a streamline body or passing through a widening passage, for example.

  5. Boundary layer thickness - Wikipedia

    en.wikipedia.org/wiki/Boundary_layer_thickness

    Conventionally, = 2.59 (Blasius boundary layer) is typical of laminar flows, while = 1.3 - 1.4 is typical of turbulent flows near the laminar-turbulent transition. [16] For turbulent flows near separation, 2.7. [17] The dividing line defining laminar-transitional and transitional-turbulent values is dependent on a number of factors so it is not ...

  6. Laminar flow - Wikipedia

    en.wikipedia.org/wiki/Laminar_flow

    The dimensionless Reynolds number is an important parameter in the equations that describe whether fully developed flow conditions lead to laminar or turbulent flow. The Reynolds number is the ratio of the inertial force to the shearing force of the fluid: how fast the fluid is moving relative to how viscous it is, irrespective of the scale of ...

  7. Dimensionless physical constant - Wikipedia

    en.wikipedia.org/wiki/Dimensionless_physical...

    In aerodynamics for example, if one considers one particular airfoil, the Reynolds number value of the laminar–turbulent transition is one relevant dimensionless number of the problem. However, it is strictly related to the particular problem: for example, it is related to the airfoil being considered and also to the type of fluid in which it ...

  8. Dimensionless numbers in fluid mechanics - Wikipedia

    en.wikipedia.org/wiki/Dimensionless_numbers_in...

    Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.

  9. Drag crisis - Wikipedia

    en.wikipedia.org/wiki/Drag_crisis

    The drag crisis is associated with a transition from laminar to turbulent boundary layer flow adjacent to the object. For cylindrical structures, this transition is associated with a transition from well-organized vortex shedding to randomized shedding behavior for super-critical Reynolds numbers, eventually returning to well-organized shedding at a higher Reynolds number with a return to ...