enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Convergence tests - Wikipedia

    en.wikipedia.org/wiki/Convergence_tests

    While most of the tests deal with the convergence of infinite series, they can also be used to show the convergence or divergence of infinite products. This can be achieved using following theorem: Let { a n } n = 1 ∞ {\displaystyle \left\{a_{n}\right\}_{n=1}^{\infty }} be a sequence of positive numbers.

  3. Abel's test - Wikipedia

    en.wikipedia.org/wiki/Abel's_test

    Abel's test cannot be applied when z = 1, so convergence at that single point must be investigated separately. Notice that Abel's test implies in particular that the radius of convergence is at least 1. It can also be applied to a power series with radius of convergence R ≠ 1 by a simple change of variables ζ = z/R. [2]

  4. Direct comparison test - Wikipedia

    en.wikipedia.org/wiki/Direct_comparison_test

    In mathematics, the comparison test, sometimes called the direct comparison test to distinguish it from similar related tests (especially the limit comparison test), provides a way of deducing whether an infinite series or an improper integral converges or diverges by comparing the series or integral to one whose convergence properties are known.

  5. Limit comparison test - Wikipedia

    en.wikipedia.org/wiki/Limit_comparison_test

    In mathematics, the limit comparison test (LCT) (in contrast with the related direct comparison test) is a method of testing for the convergence of an infinite series. Statement [ edit ]

  6. Root test - Wikipedia

    en.wikipedia.org/wiki/Root_test

    In mathematics, the root test is a criterion for the convergence (a convergence test) of an infinite series.It depends on the quantity | |, where are the terms of the series, and states that the series converges absolutely if this quantity is less than one, but diverges if it is greater than one.

  7. Ratio test - Wikipedia

    en.wikipedia.org/wiki/Ratio_test

    In fact, no convergence test can fully describe the convergence properties of the series. [4] [10] This is because if Σa n is convergent, a second convergent series Σb n can be found which converges more slowly: i.e., it has the property that lim n->∞ (b n /a n) = ∞.

  8. Series (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Series_(mathematics)

    Cauchy (1821) insisted on strict tests of convergence; he showed that if two series are convergent their product is not necessarily so, and with him begins the discovery of effective criteria. The terms convergence and divergence had been introduced long before by Gregory (1668).

  9. Integral test for convergence - Wikipedia

    en.wikipedia.org/wiki/Integral_test_for_convergence

    In mathematics, the integral test for convergence is a method used to test infinite series of monotonic terms for convergence. It was developed by Colin Maclaurin and Augustin-Louis Cauchy and is sometimes known as the Maclaurin–Cauchy test .