Search results
Results from the WOW.Com Content Network
In physics, spacetime, also called the space-time continuum, is a mathematical model that fuses the three dimensions of space and the one dimension of time into a single four-dimensional continuum. Spacetime diagrams are useful in visualizing and understanding relativistic effects, such as how different observers perceive where and when events ...
The principle of local Lorentz covariance, which states that the laws of special relativity hold locally about each point of spacetime, lends further support to the choice of a manifold structure for representing spacetime, as locally around a point on a general manifold, the region 'looks like', or approximates very closely Minkowski space ...
Certain types of world lines are called geodesics of the spacetime – straight lines in the case of flat Minkowski spacetime and their closest equivalent in the curved spacetime of general relativity. In the case of purely time-like paths, geodesics are (locally) the paths of greatest separation (spacetime interval) as measured along the path ...
Much of the work on classical unified field theories consisted of attempts to further extend the general theory of relativity to interpret additional physical phenomena, particularly electromagnetism, within the framework of general covariance, and more specifically as purely geometric objects in the spacetime continuum.
The field equations of general relativity are not parameterized by time but formulated in terms of spacetime. Many of the issues related to the problem of time exist within general relativity. At the cosmic scale, general relativity shows a closed universe with no external time. These two very different roles of time are incompatible. [4]
In general relativity, a geodesic generalizes the notion of a "straight line" to curved spacetime.Importantly, the world line of a particle free from all external, non-gravitational forces is a particular type of geodesic.
Because of the speculative nature of quantum-gravity research, there is much debate as to the correct implementation of background independence. Ultimately, the answer is to be decided by experiment, but until experiments can probe quantum-gravity phenomena, physicists have to settle for debate.
1. First postulate (principle of relativity) The laws of physics take the same form in all inertial frames of reference.. 2. Second postulate (invariance of c) . As measured in any inertial frame of reference, light is always propagated in empty space with a definite velocity c that is independent of the state of motion of the emitting body.