enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Thiele's interpolation formula - Wikipedia

    en.wikipedia.org/wiki/Thiele's_interpolation_formula

    In mathematics, Thiele's interpolation formula is a formula that defines a rational function from a finite set of inputs and their function values (). The problem of generating a function whose graph passes through a given set of function values is called interpolation .

  3. Partial fraction decomposition - Wikipedia

    en.wikipedia.org/wiki/Partial_fraction_decomposition

    In algebra, the partial fraction decomposition or partial fraction expansion of a rational fraction (that is, a fraction such that the numerator and the denominator are both polynomials) is an operation that consists of expressing the fraction as a sum of a polynomial (possibly zero) and one or several fractions with a simpler denominator. [1]

  4. Heaviside cover-up method - Wikipedia

    en.wikipedia.org/wiki/Heaviside_cover-up_method

    When a partial fraction term has a single (i.e. unrepeated) binomial in the denominator, the numerator is a residue of the function defined by the input fraction. We calculate each respective numerator by (1) taking the root of the denominator (i.e. the value of x that makes the denominator zero) and (2) then substituting this root into the ...

  5. Algebraic fraction - Wikipedia

    en.wikipedia.org/wiki/Algebraic_fraction

    A rational fraction is an algebraic fraction whose numerator and denominator are both polynomials. Thus 3 x x 2 + 2 x3 {\displaystyle {\frac {3x}{x^{2}+2x-3}}} is a rational fraction, but not x + 2 x 2 − 3 , {\displaystyle {\frac {\sqrt {x+2}}{x^{2}-3}},} because the numerator contains a square root function.

  6. List of integrals of rational functions - Wikipedia

    en.wikipedia.org/wiki/List_of_integrals_of...

    These reduction formulas can be used for integrands having integer and/or fractional exponents. Special cases of these reductions formulas can be used for integrands of the form ( a + b x n + c x 2 n ) p {\displaystyle \left(a+b\,x^{n}+c\,x^{2n}\right)^{p}} when b 2 − 4 a c = 0 {\displaystyle b^{2}-4\,a\,c=0} by setting m to 0.

  7. List of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/List_of_trigonometric...

    A formula for computing the trigonometric identities for the one-third angle exists, but it requires finding the zeroes of the cubic equation 4x 3 − 3x + d = 0, where is the value of the cosine function at the one-third angle and d is the known value of the cosine function at the full angle.

  8. List of representations of e - Wikipedia

    en.wikipedia.org/wiki/List_of_representations_of_e

    This last non-simple continued fraction (sequence A110185 in the OEIS), equivalent to = [;,,,,,...], has a quicker convergence rate compared to Euler's continued fraction formula [clarification needed] and is a special case of a general formula for the exponential function:

  9. Minkowski's question-mark function - Wikipedia

    en.wikipedia.org/wiki/Minkowski's_question-mark...

    The elements of the monoid are in correspondence with the rationals, by means of the identification of a 1, a 2, a 3, … with the continued fraction [0; a 1, a 2, a 3,…]. Since both S : x ↦ x x + 1 {\displaystyle S:x\mapsto {\frac {x}{x+1}}} and T : x ↦ 1 − x {\displaystyle T:x\mapsto 1-x} are linear fractional transformations with ...