Search results
Results from the WOW.Com Content Network
Babylonian mathematics is a range of numeric and more advanced mathematical practices in the ancient Near East, written in cuneiform script.Study has historically focused on the First Babylonian dynasty old Babylonian period in the early second millennium BC due to the wealth of data available.
In stage 2, the well-attested Old Babylonian method of completing the square is used to solve what is effectively the system of equations b − a = 0.25, ab = 0.75. [6] Geometrically this is the problem of computing the lengths of the sides of a rectangle whose area A and side-length difference b − a are known, which was a recurring problem ...
Jens Egede Høyrup, born 1943 in Copenhagen, is a Danish historian of mathematics, specializing in pre-modern and early modern mathematics, ancient Mesopotamian mathematics in particular. He is especially known for his interpretation of what has often been referred to as Old Babylonian "algebra" as consisting of concrete, geometric manipulations.
Robson was born in 1969. [3] In 1990, she graduated with a BSc in mathematics from the University of Warwick. [4] In 1995, she received a Doctor of Philosophy (DPhil) degree from the University of Oxford for a thesis titled "Old Babylonian coefficient lists and the wider context of mathematics in ancient Mesopotamia 2100-1600 BC".
Plimpton 322 is a Babylonian clay tablet, believed to have been written around 1800 BC, that contains a mathematical table written in cuneiform script.Each row of the table relates to a Pythagorean triple, that is, a triple of integers (,,) that satisfies the Pythagorean theorem, + =, the rule that equates the sum of the squares of the legs of a right triangle to the square of the hypotenuse.
Researchers have finally deciphered 4,000-year-old tablets found more than 100 years ago in modern-day Iraq.. The clay tablets have cuneiform inscriptions (wedge-shaped characters used in ancient ...
YBC 7289 is a Babylonian clay tablet notable for containing an accurate sexagesimal approximation to the square root of 2, the length of the diagonal of a unit square. This number is given to the equivalent of six decimal digits, "the greatest known computational accuracy ... in the ancient world". [ 1 ]
The majority of Babylonian mathematical work comes from two widely separated periods: The first few hundred years of the second millennium BC (Old Babylonian period), and the last few centuries of the first millennium BC (Seleucid period). [20] It is named Babylonian mathematics due to the central role of Babylon as a place of study