enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Energy–momentum relation - Wikipedia

    en.wikipedia.org/wiki/Energy–momentum_relation

    Total energy is the sum of rest energy = and relativistic kinetic energy: = = + Invariant mass is mass measured in a center-of-momentum frame. For bodies or systems with zero momentum, it simplifies to the mass–energy equation E 0 = m 0 c 2 {\displaystyle E_{0}=m_{0}c^{2}} , where total energy in this case is equal to rest energy.

  3. Lorentz factor - Wikipedia

    en.wikipedia.org/wiki/Lorentz_factor

    The Lorentz factor γ is defined as [3] = = = = =, where: . v is the relative velocity between inertial reference frames,; c is the speed of light in vacuum,; β is the ratio of v to c,; t is coordinate time,

  4. Kinetic energy - Wikipedia

    en.wikipedia.org/wiki/Kinetic_energy

    For example, for a speed of 10 km/s (22,000 mph) the correction to the non-relativistic kinetic energy is 0.0417 J/kg (on a non-relativistic kinetic energy of 50 MJ/kg) and for a speed of 100 km/s it is 417 J/kg (on a non-relativistic kinetic energy of 5 GJ/kg). The relativistic relation between kinetic energy and momentum is given by

  5. Ultrarelativistic limit - Wikipedia

    en.wikipedia.org/wiki/Ultrarelativistic_limit

    The total energy can also be approximated as = where = is the Lorentz invariant momentum. This can result from holding the mass fixed and increasing the kinetic energy to very large values or by holding the energy E fixed and shrinking the mass m to very small values which also imply a very large γ {\displaystyle \gamma } .

  6. Relativistic mechanics - Wikipedia

    en.wikipedia.org/wiki/Relativistic_mechanics

    Due to kinetic energy and binding energy, this quantity is different from the sum of the rest masses of the particles of which the system is composed. Rest mass is not a conserved quantity in special relativity, unlike the situation in Newtonian physics.

  7. Hamiltonian mechanics - Wikipedia

    en.wikipedia.org/wiki/Hamiltonian_mechanics

    Notice that the Hamiltonian (total energy) can be viewed as the sum of the relativistic energy (kinetic+rest), ⁠ = ⁠, plus the potential energy, ⁠ = ⁠. From symplectic geometry to Hamilton's equations

  8. List of relativistic equations - Wikipedia

    en.wikipedia.org/wiki/List_of_relativistic_equations

    This is the formula for the relativistic doppler shift where the difference in velocity between the emitter and observer is not on the x-axis. There are two special cases of this equation. The first is the case where the velocity between the emitter and observer is along the x-axis. In that case θ = 0, and cos θ = 1, which gives:

  9. Rindler coordinates - Wikipedia

    en.wikipedia.org/wiki/Rindler_coordinates

    Since the Rindler chart is a coordinate chart for Minkowski spacetime, we expect to find ten linearly independent Killing vector fields. Indeed, in the Cartesian chart we can readily find ten linearly independent Killing vector fields, generating respectively one parameter subgroups of time translation , three spatials, three rotations and ...