Search results
Results from the WOW.Com Content Network
The simplest kind of an orbit is a fixed point, or an equilibrium. If a mechanical system is in a stable equilibrium state then a small push will result in a localized motion, for example, small oscillations as in the case of a pendulum. In a system with damping, a stable equilibrium state is moreover asymptotically stable. On the other hand ...
If at least one has a positive real part, the point is unstable. If at least one eigenvalue has negative real part and at least one has positive real part, the equilibrium is a saddle point and it is unstable. If all the eigenvalues are real and have the same sign the point is called a node.
Diagram of a ball placed in an unstable equilibrium. Second derivative < 0 The potential energy is at a local maximum, which means that the system is in an unstable equilibrium state. If the system is displaced an arbitrarily small distance from the equilibrium state, the forces of the system cause it to move even farther away.
In order to distinguish between this and the situation when a system under equilibrium is perturbed and becomes unstable, it is preferable to use the phrase partly constrained here. In this case, the two unknowns V A and V C can be determined by resolving the vertical force equation and the moment equation simultaneously. The solution yields ...
Even if it satisfies properties P1 and P2, the absence of P3 means that the market can only be in the unstable equilibrium if it starts off there. In most simple microeconomic stories of supply and demand a static equilibrium is observed in a market; however, economic equilibrium can be also dynamic.
In mathematics, in the theory of differential equations and dynamical systems, a particular stationary or quasistationary solution to a nonlinear system is called linearly unstable if the linearization of the equation at this solution has the form / =, where r is the perturbation to the steady state, A is a linear operator whose spectrum contains eigenvalues with positive real part.
An unstable system is one that diverges from the steady state. See for example Linear difference equation#Stability . In chemistry , a steady state is a more general situation than dynamic equilibrium .
The definition for discrete-time systems is almost identical to that for continuous-time systems. The definition below provides this, using an alternate language commonly used in more mathematical texts. Let (X, d) be a metric space and f : X → X a continuous function. A point x in X is said to be Lyapunov stable, if,