Search results
Results from the WOW.Com Content Network
The largest ocean gyres are wind-driven, meaning that their locations and dynamics are controlled by the prevailing global wind patterns: easterlies at the tropics and westerlies at the midlatitudes. These wind patterns result in a wind stress curl that drives Ekman pumping in the subtropics (resulting in downwelling) and Ekman suction in ...
Thermohaline circulation (THC) is a part of the large-scale ocean circulation that is driven by global density gradients created by surface heat and freshwater fluxes. [ 1 ] [ 2 ] The adjective thermohaline derives from thermo- referring to temperature and -haline referring to salt content , factors which together determine the density of sea ...
Winds drive ocean currents in the upper 100 meters of the ocean's surface. However, ocean currents also flow thousands of meters below the surface. These deep-ocean currents are driven by differences in the water's density, which is controlled by temperature (thermo) and salinity (haline). This process is known as thermohaline circulation.
Open ocean wind circulation can lead to gyre-like structures of piled up sea surface water resulting in ... Eric J. "Ocean Motion : Definition : Wind Driven Surface ...
The North Pacific Subtropical Gyre and the much smaller North Pacific Subpolar Gyre make up the two major gyre systems in the mid-latitudes of the Northern Pacific Ocean. This two-gyre circulation in the North Pacific is driven by the trade and westerly winds. [2]
The largest ocean current is the Antarctic Circumpolar Current (ACC), a wind-driven current which flows clockwise uninterrupted around Antarctica. The ACC connects all the ocean basins together, and also provides a link between the atmosphere and the deep ocean due to the way water upwells and downwells on either side of it.
The Beaufort Gyre contains a mean volume of 800 km 3 of frozen freshwater, or sea ice, based on a mean ice thickness of 2 meters. During the June–July months, the mean seasonal cycle of freshwater content peaks; in this season, sea ice thickness reaches a minimum, implying that the amount of melted sea ice has reached a maximum.
Earth's trade winds and Coriolis force cause the ocean currents in South Pacific Ocean to circulate counterclockwise. The currents act to isolate the center of the gyre from nutrient upwelling, and few nutrients are transported there by the wind (eolian processes) because there is relatively little land in the Southern Hemisphere to supply dust to the prevailing winds.