Search results
Results from the WOW.Com Content Network
Original file (1,275 × 1,650 pixels, file size: 15.11 MB, MIME type: application/pdf, 420 pages) This is a file from the Wikimedia Commons . Information from its description page there is shown below.
The theory of relativity usually encompasses two interrelated physics theories by Albert Einstein: special relativity and general relativity, proposed and published in 1905 and 1915, respectively. [1] Special relativity applies to all physical phenomena in the absence of gravity.
General relativity, also known as the general theory of relativity, and as Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics. General relativity generalizes special relativity and refines Newton's law of universal gravitation ...
The Lorentz-transform calculation above uses a definition of extended-simultaneity (i.e. of when and where events occur at which you were not present) that might be referred to as the co-moving or "tangent free-float-frame" definition. This definition is naturally extrapolated to events in gravitationally-curved spacetimes, and to accelerated ...
To derive the equations of special relativity, one must start with two other The laws of physics are invariant under transformations between inertial frames. In other words, the laws of physics will be the same whether you are testing them in a frame 'at rest', or a frame moving with a constant velocity relative to the 'rest' frame.
Special relativity introduced a new framework for all of physics by proposing new concepts of space and time. Some then-accepted physical theories were inconsistent with that framework; a key example was Newton's theory of gravity, which describes the mutual attraction experienced by bodies due to their mass.
In physics, relativistic mechanics refers to mechanics compatible with special relativity (SR) and general relativity (GR). It provides a non-quantum mechanical description of a system of particles, or of a fluid, in cases where the velocities of moving objects are comparable to the speed of light c.
The interpretations of relativity used in the Rietdijk–Putnam argument and the Andromeda paradox are not universally accepted. Howard Stein [ 5 ] and Steven F. Savitt [ 6 ] note that in relativity the present is a local concept that cannot be extended to global hyperplanes.