enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Irrationality measure - Wikipedia

    en.wikipedia.org/wiki/Irrationality_measure

    Rational numbers have irrationality exponent 1, while (as a consequence of Dirichlet's approximation theorem) every irrational number has irrationality exponent at least 2. On the other hand, an application of Borel-Cantelli lemma shows that almost all numbers, including all algebraic irrational numbers , have an irrationality exponent exactly ...

  3. Dirichlet's approximation theorem - Wikipedia

    en.wikipedia.org/wiki/Dirichlet's_approximation...

    The Thue–Siegel–Roth theorem says that, for algebraic irrational numbers, the exponent of 2 in the corollary to Dirichlet’s approximation theorem is the best we can do: such numbers cannot be approximated by any exponent greater than 2.

  4. Liouville number - Wikipedia

    en.wikipedia.org/wiki/Liouville_number

    The inequality implies that Liouville numbers possess an excellent sequence of rational number approximations. In 1844, Joseph Liouville proved a bound showing that there is a limit to how well algebraic numbers can be approximated by rational numbers, and he defined Liouville numbers specifically so that they would have rational approximations ...

  5. Diophantine approximation - Wikipedia

    en.wikipedia.org/wiki/Diophantine_approximation

    Thus the accuracy of the approximation is bad relative to irrational numbers (see next sections). It may be remarked that the preceding proof uses a variant of the pigeonhole principle: a non-negative integer that is not 0 is not smaller than 1. This apparently trivial remark is used in almost every proof of lower bounds for Diophantine ...

  6. Methods of computing square roots - Wikipedia

    en.wikipedia.org/wiki/Methods_of_computing...

    A method analogous to piece-wise linear approximation but using only arithmetic instead of algebraic equations, uses the multiplication tables in reverse: the square root of a number between 1 and 100 is between 1 and 10, so if we know 25 is a perfect square (5 × 5), and 36 is a perfect square (6 × 6), then the square root of a number greater than or equal to 25 but less than 36, begins with ...

  7. Roth's theorem - Wikipedia

    en.wikipedia.org/wiki/Roth's_theorem

    William J. LeVeque generalized the result by showing that a similar bound holds when the approximating numbers are taken from a fixed algebraic number field. Define the height H(ξ) of an algebraic number ξ to be the maximum of the absolute values of the coefficients of its minimal polynomial. Fix κ>2.

  8. Transcendental number theory - Wikipedia

    en.wikipedia.org/wiki/Transcendental_number_theory

    For rational numbers, ω(x, 1) = 0 and is at least 1 for irrational real numbers. A Liouville number is defined to have infinite measure of irrationality. Roth's theorem says that irrational real algebraic numbers have measure of irrationality 1.

  9. Davenport–Schmidt theorem - Wikipedia

    en.wikipedia.org/wiki/Davenport–Schmidt_theorem

    In mathematics, specifically the area of Diophantine approximation, the Davenport–Schmidt theorem tells us how well a certain kind of real number can be approximated by another kind. Specifically it tells us that we can get a good approximation to irrational numbers that are not quadratic by using either quadratic irrationals or simply ...