enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Polynomial regression - Wikipedia

    en.wikipedia.org/wiki/Polynomial_regression

    Although polynomial regression fits a nonlinear model to the data, as a statistical estimation problem it is linear, in the sense that the regression function E(y | x) is linear in the unknown parameters that are estimated from the data. For this reason, polynomial regression is considered to be a special case of multiple linear regression. [1]

  3. Numerical methods for linear least squares - Wikipedia

    en.wikipedia.org/wiki/Numerical_methods_for...

    It can therefore be important that considerations of computation efficiency for such problems extend to all of the auxiliary quantities required for such analyses, and are not restricted to the formal solution of the linear least squares problem. Matrix calculations, like any other, are affected by rounding errors. An early summary of these ...

  4. Linear least squares - Wikipedia

    en.wikipedia.org/wiki/Linear_least_squares

    Cubic, quartic and higher polynomials. For regression with high-order polynomials, the use of orthogonal polynomials is recommended. [15] Numerical smoothing and differentiation — this is an application of polynomial fitting. Multinomials in more than one independent variable, including surface fitting; Curve fitting with B-splines [12]

  5. Local regression - Wikipedia

    en.wikipedia.org/wiki/Local_regression

    Local regression or local polynomial regression, [1] also known as moving regression, [2] is a generalization of the moving average and polynomial regression. [3] Its most common methods, initially developed for scatterplot smoothing, are LOESS (locally estimated scatterplot smoothing) and LOWESS (locally weighted scatterplot smoothing), both pronounced / ˈ l oʊ ɛ s / LOH-ess.

  6. Total least squares - Wikipedia

    en.wikipedia.org/wiki/Total_least_squares

    It is a generalization of Deming regression and also of orthogonal regression, and can be applied to both linear and non-linear models. The total least squares approximation of the data is generically equivalent to the best, in the Frobenius norm , low-rank approximation of the data matrix.

  7. Least squares - Wikipedia

    en.wikipedia.org/wiki/Least_squares

    The result of fitting a set of data points with a quadratic function Conic fitting a set of points using least-squares approximation. In regression analysis, least squares is a parameter estimation method based on minimizing the sum of the squares of the residuals (a residual being the difference between an observed value and the fitted value provided by a model) made in the results of each ...

  8. Linear regression - Wikipedia

    en.wikipedia.org/wiki/Linear_regression

    Example of a cubic polynomial regression, which is a type of linear regression. Although polynomial regression fits a curve model to the data, as a statistical estimation problem it is linear, in the sense that the regression function E(y | x) is linear in the unknown parameters that are estimated from the data. For this reason, polynomial ...

  9. Regression validation - Wikipedia

    en.wikipedia.org/wiki/Regression_validation

    For example, if the functional form of the model does not match the data, R 2 can be high despite a poor model fit. Anscombe's quartet consists of four example data sets with similarly high R 2 values, but data that sometimes clearly does not fit the regression line.