enow.com Web Search

  1. Ad

    related to: sequence of real numbers example
  2. generationgenius.com has been visited by 10K+ users in the past month

Search results

  1. Results from the WOW.Com Content Network
  2. Real number - Wikipedia

    en.wikipedia.org/wiki/Real_number

    The real numbers can be constructed as a completion of the rational numbers, in such a way that a sequence defined by a decimal or binary expansion like (3; 3.1; 3.14; 3.141; 3.1415; ...) converges to a unique real number—in this case π.

  3. Sequence - Wikipedia

    en.wikipedia.org/wiki/Sequence

    In fact, every real number can be written as the limit of a sequence of rational numbers (e.g. via its decimal expansion, also see completeness of the real numbers). As another example, π is the limit of the sequence (3, 3.1, 3.14, 3.141, 3.1415, ...), which is increasing.

  4. Construction of the real numbers - Wikipedia

    en.wikipedia.org/wiki/Construction_of_the_real...

    An axiomatic definition of the real numbers consists of defining them as the elements of a complete ordered field. [2] [3] [4] This means the following: The real numbers form a set, commonly denoted , containing two distinguished elements denoted 0 and 1, and on which are defined two binary operations and one binary relation; the operations are called addition and multiplication of real ...

  5. Limit of a sequence - Wikipedia

    en.wikipedia.org/wiki/Limit_of_a_sequence

    In the real numbers every Cauchy sequence converges to some limit. A Cauchy sequence is a sequence whose terms ultimately become arbitrarily close together, after sufficiently many initial terms have been discarded. The notion of a Cauchy sequence is important in the study of sequences in metric spaces, and, in particular, in real analysis.

  6. Real analysis - Wikipedia

    en.wikipedia.org/wiki/Real_analysis

    In mathematics, the branch of real analysis studies the behavior of real numbers, sequences and series of real numbers, and real functions. [1] Some particular properties of real-valued sequences and functions that real analysis studies include convergence , limits , continuity , smoothness , differentiability and integrability .

  7. Limit inferior and limit superior - Wikipedia

    en.wikipedia.org/wiki/Limit_inferior_and_limit...

    In mathematical analysis, limit superior and limit inferior are important tools for studying sequences of real numbers.Since the supremum and infimum of an unbounded set of real numbers may not exist (the reals are not a complete lattice), it is convenient to consider sequences in the affinely extended real number system: we add the positive and negative infinities to the real line to give the ...

  8. Monotone convergence theorem - Wikipedia

    en.wikipedia.org/wiki/Monotone_convergence_theorem

    Every bounded-above monotonically nondecreasing sequence of real numbers is convergent in the real numbers because the supremum exists and is a real number. The proposition does not apply to rational numbers because the supremum of a sequence of rational numbers may be irrational.

  9. Cantor's diagonal argument - Wikipedia

    en.wikipedia.org/wiki/Cantor's_diagonal_argument

    Define the bijection g(t) from T to (0, 1): If t is the n th string in sequence s, let g(t) be the n th number in sequence r ; otherwise, g(t) = 0.t 2. To construct a bijection from T to R , start with the tangent function tan( x ), which is a bijection from (−π/2, π/2) to R (see the figure shown on the right).

  1. Ad

    related to: sequence of real numbers example