enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Abel–Ruffini theorem - Wikipedia

    en.wikipedia.org/wiki/Abel–Ruffini_theorem

    With modern computers and programs, deciding whether a polynomial is solvable by radicals can be done for polynomials of degree greater than 100. [6] Computing the solutions in radicals of solvable polynomials requires huge computations. Even for the degree five, the expression of the solutions is so huge that it has no practical interest.

  3. Degree of a polynomial - Wikipedia

    en.wikipedia.org/wiki/Degree_of_a_polynomial

    For polynomials in two or more variables, the degree of a term is the sum of the exponents of the variables in the term; the degree (sometimes called the total degree) of the polynomial is again the maximum of the degrees of all terms in the polynomial. For example, the polynomial x 2 y 2 + 3x 3 + 4y has degree 4, the same degree as the term x ...

  4. Binomial coefficient - Wikipedia

    en.wikipedia.org/wiki/Binomial_coefficient

    Pascal's triangle, rows 0 through 7. Equation 8 for m = 3 is ... differences that for any polynomial P(x) of degree less than n, ... part of k/p j is greater than the ...

  5. Polynomial - Wikipedia

    en.wikipedia.org/wiki/Polynomial

    The polynomial 3x 2 − 5x + 4 is written in descending powers of x. The first term has coefficient 3, indeterminate x, and exponent 2. In the second term, the coefficient is −5. The third term is a constant. Because the degree of a non-zero polynomial is the largest degree of any one term, this polynomial has degree two. [11]

  6. Horner's method - Wikipedia

    en.wikipedia.org/wiki/Horner's_method

    In mathematics and computer science, Horner's method (or Horner's scheme) is an algorithm for polynomial evaluation.Although named after William George Horner, this method is much older, as it has been attributed to Joseph-Louis Lagrange by Horner himself, and can be traced back many hundreds of years to Chinese and Persian mathematicians. [1]

  7. Chebyshev polynomials - Wikipedia

    en.wikipedia.org/wiki/Chebyshev_polynomials

    Chebyshev polynomials can be defined in this form when studying trigonometric polynomials. [4] That cos nx is an n th-degree polynomial in cos x can be seen by observing that cos nx is the real part of one side of de Moivre's formula: ⁡ + ⁡ = (⁡ + ⁡).

  8. Gaussian binomial coefficient - Wikipedia

    en.wikipedia.org/wiki/Gaussian_binomial_coefficient

    The Gaussian binomial coefficient, written as () or [], is a polynomial in q with integer coefficients, whose value when q is set to a prime power counts the number of subspaces of dimension k in a vector space of dimension n over , a finite field with q elements; i.e. it is the number of points in the finite Grassmannian (,).

  9. Cubic equation - Wikipedia

    en.wikipedia.org/wiki/Cubic_equation

    This works well for every degree, but, in degrees higher than four, the resulting polynomial that has the s i as roots has a degree higher than that of the initial polynomial, and is therefore unhelpful for solving. This is the reason for which Lagrange's method fails in degrees five and higher.