enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Range ambiguity resolution - Wikipedia

    en.wikipedia.org/wiki/Range_ambiguity_resolution

    Range ambiguity resolution is a technique used with medium pulse-repetition frequency (PRF) radar to obtain range information for distances that exceed the distance between transmit pulses. This signal processing technique is required with pulse-Doppler radar .

  3. Ambiguity function - Wikipedia

    en.wikipedia.org/wiki/Ambiguity_function

    In pulsed radar and sonar signal processing, an ambiguity function is a two-dimensional function of propagation delay and Doppler frequency, (,).It represents the distortion of a returned pulse due to the receiver matched filter [1] (commonly, but not exclusively, used in pulse compression radar) of the return from a moving target.

  4. Ambiguity resolution - Wikipedia

    en.wikipedia.org/wiki/Ambiguity_resolution

    The x axis is range (left-right). The y axis is radial speed. The z axis is amplitude (up-down). The shape of the rectangles changes when the PRF changes. [2] Pulse-Doppler ambiguity zones. Each blue zone with no label represents a velocity/range combination that will be folded into the unambiguous zone.

  5. Pulse-Doppler signal processing - Wikipedia

    en.wikipedia.org/wiki/Pulse-Doppler_signal...

    Pulse Doppler relies on medium pulse repetition frequency (PRF) from about 3 kHz to 30 kHz. Each transmit pulse is separated by 5 km to 50 km distance. Range and speed of the target are folded by a modulo operation produced by the sampling process. True range is found using the ambiguity resolution process. Ambiguity resolution process explanation

  6. Space-time adaptive processing - Wikipedia

    en.wikipedia.org/wiki/Space-time_adaptive_processing

    Doppler-Bearing response of a 2-dimensional beam-former. Space-time adaptive processing (STAP) is a signal processing technique most commonly used in radar systems. It involves adaptive array processing algorithms to aid in target detection.

  7. Pulse compression - Wikipedia

    en.wikipedia.org/wiki/Pulse_compression

    Pulse compression is a signal processing technique commonly used by radar, sonar and echography to either increase the range resolution when pulse length is constrained or increase the signal to noise ratio when the peak power and the bandwidth (or equivalently range resolution) of the transmitted signal are constrained.

  8. Synthetic-aperture radar - Wikipedia

    en.wikipedia.org/wiki/Synthetic-aperture_radar

    In the cross-range coordinate, the similar resolution is mainly proportional to the bandwidth of the Doppler shift of the signal returns within the beamwidth. Since Doppler frequency depends on the angle of the scattering point's direction from the broadside direction, the Doppler bandwidth available within the beamwidth is the same at all ranges.

  9. Frequency ambiguity resolution - Wikipedia

    en.wikipedia.org/wiki/Frequency_ambiguity_resolution

    Radar pulsing causes a phenomenon called aliasing, which occurs when the Doppler frequency created by reflector motion exceeds the pulse repetition frequency (PRF). [1] This concept is related to range ambiguity resolution. Doppler frequency shift is introduced onto reflected signals used by radar.