Search results
Results from the WOW.Com Content Network
In statistics, the reduced chi-square statistic is used extensively in goodness of fit testing. It is also known as mean squared weighted deviation (MSWD) in isotopic dating [1] and variance of unit weight in the context of weighted least squares. [2] [3]
It is a goodness of fit measure of statistical models, and forms the mathematical basis for several correlation coefficients. [1] The summary statistics is particularly useful and popular when used to evaluate models where the dependent variable is binary, taking on values {0,1}.
Proof. We need to prove that if you add a burst of length to a codeword (i.e. to a polynomial that is divisible by ()), then the result is not going to be a codeword (i.e. the corresponding polynomial is not divisible by ()).
1. The first stage of the process is to identify the full range of sub-tasks that a system operator would be required to complete within a given task. 2. Once this task description has been constructed a nominal human unreliability score for the particular task is then determined, usually by consulting local experts.
A low code-rate close to zero implies a strong code that uses many redundant bits to achieve a good performance, while a large code-rate close to 1 implies a weak code. The redundant bits that protect the information have to be transferred using the same communication resources that they are trying to protect.
The chi-square distribution has (k − c) degrees of freedom, where k is the number of non-empty bins and c is the number of estimated parameters (including location and scale parameters and shape parameters) for the distribution plus one. For example, for a 3-parameter Weibull distribution, c = 4.
This fraction is subtracted from 1 and multiplied by the pre-adjusted clock frequency of 10.23 MHz: (1 – 4.472 × 10 −10) × 10.23 = 10.22999999543. That is we need to slow the clocks down from 10.23 MHz to 10.22999999543 MHz in order to negate both time dilation effects.
A special case of constant weight codes are the one-of-N codes, that encode bits in a code-word of bits. The one-of-two code uses the code words 01 and 10 to encode the bits '0' and '1'. A one-of-four code can use the words 0001, 0010, 0100, 1000 in order to encode two bits 00, 01, 10, and 11.