Search results
Results from the WOW.Com Content Network
Ionic radius, r ion, is the radius of a monatomic ion in an ionic crystal structure. Although neither atoms nor ions have sharp boundaries, they are treated as if they were hard spheres with radii such that the sum of ionic radii of the cation and anion gives the distance between the ions in a crystal lattice .
For typical ionic solids, the cations are smaller than the anions, and each cation is surrounded by coordinated anions which form a polyhedron.The sum of the ionic radii determines the cation-anion distance, while the cation-anion radius ratio + / (or /) determines the coordination number (C.N.) of the cation, as well as the shape of the coordinated polyhedron of anions.
In condensed matter physics and inorganic chemistry, the cation-anion radius ratio can be used to predict the crystal structure of an ionic compound based on the relative size of its atoms. It is defined as the ratio of the ionic radius of the positively charged cation to the ionic radius of the negatively charged anion in a cation-anion ...
The calculated lattice energy gives a good estimation for the Born–Landé equation; the real value differs in most cases by less than 5%. Furthermore, one is able to determine the ionic radii (or more properly, the thermochemical radius) using the Kapustinskii equation when the lattice energy is known.
r B is the radius of the B cation. r O is the radius of the anion (usually oxygen). In an ideal cubic perovskite structure, the lattice parameter (i.e., length) of the unit cell (a) can be calculated using the following equation: [ 1 ]
In principle, the spacing between two adjacent oppositely charged ions (the length of the ionic bond between them) should equal the sum of their ionic radii. [13] Covalent radius: the nominal radius of the atoms of an element when covalently bound to other atoms, as deduced from the separation between the atomic nuclei in molecules. In ...
This arrangement reflects the ion's charge density and size, leading to strong ion-dipole interactions with water molecules. In contrast, chloride ions generally have a hydration number closer to 6 due to their larger ionic radius and more distributed charge, which allows them to stabilize a larger number of water molecules in their hydration ...
Ionic potential is the ratio of the electrical charge (z) to the radius (r) of an ion. [1]= = As such, this ratio is a measure of the charge density at the surface of the ion; usually the denser the charge, the stronger the bond formed by the ion with ions of opposite charge.