Search results
Results from the WOW.Com Content Network
While degeneracy pressure usually dominates at extremely high densities, it is the ratio between degenerate pressure and thermal pressure which determines degeneracy. Given a sufficiently drastic increase in temperature (such as during a red giant star's helium flash ), matter can become non-degenerate without reducing its density.
Using the Fermi gas as a model, it is possible to calculate the Chandrasekhar limit, i.e. the maximum mass any star may acquire (without significant thermally generated pressure) before collapsing into a black hole or a neutron star. The latter, is a star mainly composed of neutrons, where the collapse is also avoided by neutron degeneracy ...
What links here; Related changes; Upload file; Special pages; Permanent link; Page information; Cite this page; Get shortened URL; Download QR code
Water pressure of a garden hose [58] 300 to 700 kPa 50–100 psi Typical water pressure of a municipal water supply in the US [59] 358 to 524 kPa: 52-76 psi Threshold of pain for objects outside the human body hitting it [60] 400 to 600 kPa 60–90 psi Carbon dioxide pressure in a champagne bottle [61] 520 kPa 75 psi
This is the pressure that prevents a white dwarf star from collapsing. A star exceeding this limit and without significant thermally generated pressure will continue to collapse to form either a neutron star or black hole, because the degeneracy pressure provided by the electrons is weaker than the inward pull of gravity.
Neutron stars are expected to have a skin or "atmosphere" of normal matter on the order of a millimeter thick, underneath which they are composed almost entirely of closely packed neutrons called neutron matter [5] with a slight dusting of free electrons and protons mixed in. This degenerate neutron matter has a density of about 6.65 × 10 17 ...
It is hypothesized that when the neutron-degenerate matter, which makes up neutron stars, is put under sufficient pressure from the star's own gravity or the initial supernova creating it, the individual neutrons break down into their constituent quarks (up quarks and down quarks), forming what is known as quark matter. This conversion may be ...
In a star less massive than the limit, the gravitational compression is balanced by short-range repulsive neutron–neutron interactions mediated by the strong force and also by the quantum degeneracy pressure of neutrons, preventing collapse. [12]: 74 If its mass is above the limit, the star will collapse to some denser form.