Search results
Results from the WOW.Com Content Network
The power rule for differentiation was derived by Isaac Newton and Gottfried Wilhelm Leibniz, each independently, for rational power functions in the mid 17th century, who both then used it to derive the power rule for integrals as the inverse operation. This mirrors the conventional way the related theorems are presented in modern basic ...
Otherwise, a function is an antiderivative of the zero function if and only if it is constant on each connected component of (those constants need not be equal). This observation implies that if a function g : U → C {\displaystyle g:U\to \mathbb {C} } has an antiderivative, then that antiderivative is unique up to addition of a function which ...
If the function f does not have any continuous antiderivative which takes the value zero at the zeros of f (this is the case for the sine and the cosine functions), then sgn(f(x)) ∫ f(x) dx is an antiderivative of f on every interval on which f is not zero, but may be discontinuous at the points where f(x) = 0.
Slope of the constant function is zero, ... is the functional power rule: ... – Differentiation under the integral sign formula Hyperbolic functions ...
Indefinite integrals are antiderivative functions. A constant (the constant of integration) may be added to the right hand side of any of these formulas, but has been suppressed here in the interest of brevity.
The inverse chain rule method (a special case of integration by substitution) Integration by parts (to integrate products of functions) Inverse function integration (a formula that expresses the antiderivative of the inverse f −1 of an invertible and continuous function f, in terms of f −1 and the antiderivative of f).
This yields the formula for integration by parts: ... The antiderivative of − 1 / x 2 can be found with the power rule and is ... th one decay to zero at ...
The validity of this rule follows from the validity of the Feynman method, for one may always substitute a subscripted del and then immediately drop the subscript under the condition of the rule. For example, from the identity A ⋅( B × C ) = ( A × B )⋅ C we may derive A ⋅(∇× C ) = ( A ×∇)⋅ C but not ∇⋅( B × C ) = (∇× B ...