enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Integration by parts - Wikipedia

    en.wikipedia.org/wiki/Integration_by_parts

    Integration by parts is a heuristic rather than a purely mechanical process for solving integrals; given a single function to integrate, the typical strategy is to carefully separate this single function into a product of two functions u(x)v(x) such that the residual integral from the integration by parts formula is easier to evaluate than the ...

  3. Power rule - Wikipedia

    en.wikipedia.org/wiki/Power_rule

    The power rule for differentiation was derived by Isaac Newton and Gottfried Wilhelm Leibniz, each independently, for rational power functions in the mid 17th century, who both then used it to derive the power rule for integrals as the inverse operation. This mirrors the conventional way the related theorems are presented in modern basic ...

  4. Antiderivative - Wikipedia

    en.wikipedia.org/wiki/Antiderivative

    The inverse chain rule method (a special case of integration by substitution) Integration by parts (to integrate products of functions) Inverse function integration (a formula that expresses the antiderivative of the inverse f −1 of an invertible and continuous function f, in terms of f −1 and the antiderivative of f).

  5. Product rule - Wikipedia

    en.wikipedia.org/wiki/Product_rule

    In calculus, the product rule (or Leibniz rule [1] or Leibniz product rule) is a formula used to find the derivatives of products of two or more functions.For two functions, it may be stated in Lagrange's notation as () ′ = ′ + ′ or in Leibniz's notation as () = +.

  6. Differentiation rules - Wikipedia

    en.wikipedia.org/wiki/Differentiation_rules

    The most general power rule is the functional power rule: ... the Leibniz integral rule and can be derived ... under the integral sign formula ...

  7. General Leibniz rule - Wikipedia

    en.wikipedia.org/wiki/General_Leibniz_rule

    The proof of the general Leibniz rule [2]: 68–69 proceeds by induction. Let and be -times differentiable functions.The base case when = claims that: ′ = ′ + ′, which is the usual product rule and is known to be true.

  8. Vector calculus identities - Wikipedia

    en.wikipedia.org/wiki/Vector_calculus_identities

    The validity of this rule follows from the validity of the Feynman method, for one may always substitute a subscripted del and then immediately drop the subscript under the condition of the rule. For example, from the identity A ⋅( B × C ) = ( A × B )⋅ C we may derive A ⋅(∇× C ) = ( A ×∇)⋅ C but not ∇⋅( B × C ) = (∇× B ...

  9. Cauchy formula for repeated integration - Wikipedia

    en.wikipedia.org/wiki/Cauchy_formula_for...

    The Cauchy formula for repeated integration, named after Augustin-Louis Cauchy, allows one to compress n antiderivatives of a function into a single integral (cf. Cauchy's formula). For non-integer n it yields the definition of fractional integrals and (with n < 0) fractional derivatives .