Search results
Results from the WOW.Com Content Network
In statistics and in particular statistical theory, unbiased estimation of a standard deviation is the calculation from a statistical sample of an estimated value of the standard deviation (a measure of statistical dispersion) of a population of values, in such a way that the expected value of the calculation equals the true value.
The theory of median-unbiased estimators was revived by George W. Brown in 1947: [8]. An estimate of a one-dimensional parameter θ will be said to be median-unbiased, if, for fixed θ, the median of the distribution of the estimate is at the value θ; i.e., the estimate underestimates just as often as it overestimates.
This forms a distribution of different means, and this distribution has its own mean and variance. Mathematically, the variance of the sampling mean distribution obtained is equal to the variance of the population divided by the sample size. This is because as the sample size increases, sample means cluster more closely around the population mean.
The statistical errors, on the other hand, are independent, and their sum within the random sample is almost surely not zero. One can standardize statistical errors (especially of a normal distribution) in a z-score (or "standard score"), and standardize residuals in a t-statistic, or more generally studentized residuals.
However, the sample standard deviation is not unbiased for the population standard deviation – see unbiased estimation of standard deviation. Further, for other distributions the sample mean and sample variance are not in general MVUEs – for a uniform distribution with unknown upper and lower bounds, the mid-range is the MVUE for the ...
The unbiased estimation of standard deviation is a technically involved problem, though for the normal distribution using the term n − 1.5 yields an almost unbiased estimator. The unbiased sample variance is a U-statistic for the function ƒ ( y 1 , y 2 ) = ( y 1 − y 2 ) 2 /2, meaning that it is obtained by averaging a 2-sample statistic ...
For a large sample from a normal distribution, 2.22Q n is approximately unbiased for the population standard deviation. For small or moderate samples, the expected value of Q n under a normal distribution depends markedly on the sample size, so finite-sample correction factors (obtained from a table or from simulations) are used to calibrate ...
The optimal value depends on excess kurtosis, as discussed in mean squared error: variance; for the normal distribution this is optimized by dividing by n + 1 (instead of n − 1 or n). Thirdly, Bessel's correction is only necessary when the population mean is unknown, and one is estimating both population mean and population variance from a ...