enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Trial division - Wikipedia

    en.wikipedia.org/wiki/Trial_division

    A definite bound on the prime factors is possible. Suppose P i is the i 'th prime, so that P 1 = 2, P 2 = 3, P 3 = 5, etc. Then the last prime number worth testing as a possible factor of n is P i where P 2 i + 1 > n; equality here would mean that P i + 1 is a factor. Thus, testing with 2, 3, and 5 suffices up to n = 48 not just 25 because the ...

  3. Generation of primes - Wikipedia

    en.wikipedia.org/wiki/Generation_of_primes

    A prime sieve works by creating a list of all integers up to a desired limit and progressively removing composite numbers (which it directly generates) until only primes are left. This is the most efficient way to obtain a large range of primes; however, to find individual primes, direct primality tests are more efficient [ citation needed ] .

  4. Fermat's factorization method - Wikipedia

    en.wikipedia.org/wiki/Fermat's_factorization_method

    Suppose N has more than two prime factors. That procedure first finds the factorization with the least values of a and b . That is, a + b {\displaystyle a+b} is the smallest factor ≥ the square-root of N , and so a − b = N / ( a + b ) {\displaystyle a-b=N/(a+b)} is the largest factor ≤ root- N .

  5. Table of prime factors - Wikipedia

    en.wikipedia.org/wiki/Table_of_prime_factors

    lcm(m, n) (least common multiple of m and n) is the product of all prime factors of m or n (with the largest multiplicity for m or n). gcd(m, n) × lcm(m, n) = m × n. Finding the prime factors is often harder than computing gcd and lcm using other algorithms which do not require known prime factorization.

  6. Integer factorization - Wikipedia

    en.wikipedia.org/wiki/Integer_factorization

    Continuing this process until every factor is prime is called prime factorization; the result is always unique up to the order of the factors by the prime factorization theorem. To factorize a small integer n using mental or pen-and-paper arithmetic, the simplest method is trial division : checking if the number is divisible by prime numbers 2 ...

  7. Fundamental theorem of arithmetic - Wikipedia

    en.wikipedia.org/wiki/Fundamental_theorem_of...

    In mathematics, the fundamental theorem of arithmetic, also called the unique factorization theorem and prime factorization theorem, states that every integer greater than 1 can be represented uniquely as a product of prime numbers, up to the order of the factors. [3] [4] [5] For example,

  8. Integer factorization records - Wikipedia

    en.wikipedia.org/wiki/Integer_factorization_records

    Integer factorization is the process of determining which prime numbers divide a given positive integer.Doing this quickly has applications in cryptography.The difficulty depends on both the size and form of the number and its prime factors; it is currently very difficult to factorize large semiprimes (and, indeed, most numbers that have no small factors).

  9. RSA numbers - Wikipedia

    en.wikipedia.org/wiki/RSA_numbers

    The CPU time spent on finding these factors amounted to approximately 900 core-years on a 2.1 GHz Intel Xeon Gold 6130 CPU. Compared to the factorization of RSA-768, the authors estimate that better algorithms sped their calculations by a factor of 3–4 and faster computers sped their calculation by a factor of 1.25–1.67.